• Title/Summary/Keyword: Permeable pore volume

Search Result 3, Processing Time 0.016 seconds

Characteristics of Excess Water Dewatered Concrete Using Permeable Liner (투수시트를 적용하여 잉여수를 탈수한 콘크리트의 강도 특성)

  • Jeon, Kyu-Nam;An, Gi-Hong;Lee, Jong-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.675-682
    • /
    • 2013
  • In this study, to enhance the quality of concrete surface by removing the surplus water, permeable liner attached the euroform was applied for manufacturing concrete specimens. Various kinds of concrete mixtures with different water to binder ratios were applied and the strength properties of the hardened concrete surfaces were evaluated at different heights. Experimental results showed that the rebound values by schmidt hammer test and the compressive strengths on the surfaces of concrete specimens were increased as proportion to the amount of mixture water which is dependent on the water to binder ratio of each concrete mixture, and more enhancements were observed on the middle and lower specimen surfaces than the upper region. SEM analysis also showed that much denser hydrate structures were observed on the specimen surfaces by the application of the permeable liner while similar hydrate formations were occurred regardless of surface treatment conditions. From the MIP test results of the concrete surfaces, it was observed that, by the application of permeable liner, the pore volume below $0.01{\mu}m$ was decreased with a maximum of 50% resulting in the densification of pore structures.

Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications (시공조건이 시멘트계 고화토의 투수계수에 미치는 영향)

  • 정문경;김강석;우제윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

Relationship between Chloride Diffusivity and the Fundamental Properties of Concrete (염소이온의 확산계수와 콘크리트의 기초물성과의 관계)

  • Choi, Doo-Sun;Choi, Jae-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • Marine concrete structure is exposed to salt injury and deteriorated by steel corrosion due to chloride ions diffusion. It, therefore, is very important to estimate the chloride diffusivity in concrete. In this paper the compressive strength and permeable pore volume of concrete are measured and the diffusion coefficient and penetration depth of chloride ions in concrete were investigated to estimate the chloride diffusivity efficiently. To correlate these results each other, regression analysis was done. The results showed a good linear relation between chloride diffusivity and the fundamental properties of concrete and the chloride diffusivity of concrete with water-cement ratios of $40%{\sim}60%$ were about $2.5{\sim}6.6{\times}10^{-12}m^2/s$.