• 제목/요약/키워드: Permanent mold casting

검색결과 38건 처리시간 0.023초

Nanocomposite Magnetic Materials

  • Ludwig Schultz;Alberto Bollero;Axel Handstein;Dietrich Hinz;Karl-Hartmut Muller;Golden Kumar;Juergen Eckert;Oliver Gutfleisch;Anke Kirehner Aru Yan
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.381-393
    • /
    • 2002
  • Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

가스아토마이징된 $Al_{87.3}misch$ $metal_{8.3}Ni_{4.4}$ 분말의 냉각속도와 수지상 가지 가격에 관한 고찰 (A Study on Cooling Rate and Dendrite Arm Spacing of Gas Atomized $Al_{87.3}misch$ $metal_{8.3}Ni_{4.4}$ Powder)

  • 김지훈;예병준;김영환
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.54-65
    • /
    • 1999
  • The present work is an attempt to evaluate the relationship between dendrite arm spacing and average cooling rate in gasatomized $Al_{87.3}misch$ $metal_{8.3}Ni_{4.4}$ powder by means of the following methods. One is calculation of heat transfer coefficient and average cooling rate, which are derived from estimated particle velocity during gas-atomization. The other is measurement of secondary dendrite arm spacing, which are observed on the particle surface. Then, we make experimental equation for this relationship in case of permanent mold casting and compare it with similar equation in case of rapidly solidified powder. Both average cooling rates and solidification rates are considered to represent the variance of dendrite arm spacings in two types soidification route. Even though there is a considerable difference in each average cooling rate, the dendrite arm spacing values are similar in two cases; particle diameter, $100\;{\mu}m$, and casting width, 2.05 mm. It is because that each solidification route has similar solidification rate.

  • PDF

TiNi 형상기억합금을 이용한 복합재료의 제조 및 계면 특성 (Fabrication and Interface Properties of TiNi/6061Al Composite)

  • 김순국;이준희
    • 한국재료학회지
    • /
    • 제9권4호
    • /
    • pp.419-427
    • /
    • 1999
  • TiNi shape memory alloy was shape memory heat-treated and investigated its mechanical properties with the variation of prestrain. Also 6061 Al matrix composites with TiNi shape memory alloy fiber as reinforcement have been fabricated by Permanent Mold Casting to investigate the microstructures and interface properties. Yield stress of TiNi wire was the most high in the case of before heat-treatment and then decreased as increasing heat-treatment time. In each heat-treatment condition, the yield stress of TiNi wire was not changed with increasing the amount of prestrain. The interface bonding of TiNi/6061Al composite was fine. There was a 2$\mu\textrm{m}$ thickness of diffusion reaction layer at the interface. We could find out that this diffusion reaction layer was made by the mutual diffusion. The diffusion rate from Al base to TiNi wire was faster than that of reverse diffusion and the amount of the diffusion was also a little more than that of reverse.

  • PDF

AM80 마그네슘 합금의 미세조직 및 기계적 특성에 대한 압출조건의 영향 (Effect of Extrusion Conditions on Microstructures and Mechanical Properties of AM80 Magnesium Alloys)

  • 이상구;김덕현;김대환;임수근
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.379-385
    • /
    • 2018
  • This study investigated the effect of extrusion conditions on microstructures and mechanical properties of AM80 magnesium alloys. The billets of magnesium alloy used for hot extrusion were prepared by permanent mold casting method, and its extrusion was hot direct extrusion with different extrusion conditions. The results of microstructural analysis showed that the main phases in the as-casted alloys were ${\alpha}-Mg$, ${\beta}-Mg_{17}Al_{12}$, and lamella $Mg_{17}Al_{12}$. Hot extrusion results, The tensile strength of the most soundly manufactured extruded bars (extrusion temp: $350^{\circ}C$, extrusion ratio: 27:1, ram speed: 2mm/s) was approximately 327MPa at room temperature. The increase in the mechanical properties of hot-extruded alloys was as a result of grain refinement by dynamical recrystallization during hot extrusion.

분사주조한 $SiC_p$ 입자강화 알루미늄 복합재료의 미세조직과 마멸특성 (Microstructure and Wear Behavior of $SiC_p-reinforced$ Aluminum Matrix Composites Fabricated by Spray Casting Process)

  • 박종성;김명호
    • 한국주조공학회지
    • /
    • 제15권6호
    • /
    • pp.574-587
    • /
    • 1995
  • The $SiC_p-reinforced$ preforms fabricated by spray casting process were hot-extruded and subsequently T6-treated, and the morphology of the silicon phase and the grain size for these preforms and extruded samples were examined by Image Analyzer. Experimental observation revealed that with increase in volume percent of SiC particles, the grain size and silicon phase of the $Al-Si/SiC_p$ composites become finer, the shape of Si phase is changed from blocky to granular type, and aspect ratio of Si phase tend to become unity. Wear-tests with various sliding velocities, show that the wear resistance of spray cast specimen is increased remarkably compare to the permanent mold cast specimen at the sliding velocity range of $1.98{\sim}2.38m/sec$.. Microstructural observations for the worn surfaces of specimens revealed that wear resistance of Al-Si alloys at certain sliding velocities could be improved not only by the fine grain size of aluminum matrix but also the fine size and granular shape of silicon phases. The wear resistance of $SiC_p$ reinforced aluminum composites was found to be sensitive to the volume percentage of the reinforcing particles. The worn surfaces with various sliding velocities, show that change in wear mechanism seems to occur at the sliding velocity of near 2m/sec for all samples, and such a change in mechanism is delayed with increase in $SiC_p$ volume fraction.

  • PDF

주조용 A356합금에서 Fe계 금속간화합물의 형상에 미치는 Be의 영향 (Beryllium Effects on the Morphology of Iron Intermetallics in the A356 Aluminium Casting Alloy)

  • 이정근;박종성;김명호
    • 한국주조공학회지
    • /
    • 제18권4호
    • /
    • pp.357-363
    • /
    • 1998
  • Microstructure of A356 aluminium alloys cast in a permanent mold was investigated by optical microscope and image analyzer, with particular respect to the shape and size distribution of iron intermetallics known as ${\beta}-phase$ ($Al_5FeSi$). Morphologies of the ${\beta}-phase$ was found to change gradually with the Be:Fe ratio like these. In Be-free alloys, ${\beta}-phase$ with needlelike morphology was well developed, but script phase was appeared when the Be:Fe ratio is above 0.2:1. With the Be:Fe ratios of 0.4:1-1:1, script phase as well as Be-rich phase was also observed. In case of higher Be addition, above 1:1, Be-rich phase was observed on all regions of the specimens, and increasing of the Be:Fe ratios gradually make the Be-rich phase coarse. It was also observed that the ${\beta}-phase$ with needlelike morphology was coarsened with increase of the Fe content in Be-free alloys. However, in Be-added alloys, length and number of these ${\beta}-phases$ were considerably decreased with the increased Be:Fe ratio. It was concluded that Fe impurity element to be crystallized into needlelike intermetallics was tied up by Be addition element, and new phases were crystallized into script or Be-rich intermetallics.

  • PDF

Beryllium Effects on the Microstructure and Mechanical Properties of A356 Aluminium Casting Alloy

  • Lee, Jeong-Keun;Kim, Myung-Ho;Choi, Sang-Ho
    • 한국주조공학회지
    • /
    • 제18권5호
    • /
    • pp.431-438
    • /
    • 1998
  • Microstructure of A356 aluminum alloys cast in the permanent mold was investigated by optical microscope and image analyzer, with particular respect to the shape and size distribution of iron intermetallics known as ${\beta}-phase$ ($Al_5FeSi$). Morphologies of the ${\beta}-phase$ was found to change gradually with the Be:Fe ratio like these. In Be-free alloys, ${\beta}-phase$ with needlelike morphology was well developed, but script phase was appeared when the Be:Fe ratio is above 0.2:1. With the Be:Fe ratios of 0.4:1-1:1, script phase as well as Be-rich phase was also observed. In case of higher Be addition, above 1:1, Be-rich phase was observed on all regions of the specimens, and increasing of the Be:Fe ratios gradually make the Be-rich phase coarse. It was also observed that the ${\beta}-phase$ with needlelike morphology was coarsened with increase of the Fe content in Be-free alloys. However, in Be-added alloys, length and number of these ${\beta}-phases$ were considerably decreased with the increased Be:Fe ratio. Beryllium addition improved tensile properties and impact toughness of the A356 aluminium alloy, due to the formation of a script phase or a Be-rich phase instead of a needlelike ${\beta}-phase$. The DSC tests indicated that the presence of Be could increase the amount of Mg which is available for $Mg_2Si$ precipitate hardening, and enhance the precipitation kinetics by lowering the ternary eutectic temperature.

  • PDF

Mg-xSn(x = 1, 3, 5, 7, 9 wt.%) 합금의 미세조직 및 부식특성 (Microstructure and Corrosion Behavior of Mg-xSn (x = 1, 3, 5, 7, 9 wt.%) Alloys)

  • 강용묵;김상현;조수미;박경철;김병호;박익민;박용호
    • 한국주조공학회지
    • /
    • 제31권6호
    • /
    • pp.362-365
    • /
    • 2011
  • In the present work, the corrosion properties of Mg-xSn (x = 1, 3, 5, 7 and 9 wt.%) alloys have been investigated. Potentiodynamic polarization and immersion tests were carried out in 3.5% NaCl solution of pH 7.2 at room temperature to measure the corrosion properties of Mg-xSn (x = 1, 3, 5, 7 and 9 wt.%) alloys. With increase of the Sn contents, the volume fraction of the $Mg_2Sn$ phase was increased. The corrosion rate of Mg-xSn alloys was increased up to 7 wt.%Sn and decreased above 9 wt.%Sn. Initiation of galvanic site during immersion mainly occurred at Mg/$Mg_2Sn$ interface and propagation went into ${\alpha}$-Mg. For this reason, corrosion properties of Mg-xSn (added from 1 wt.%Sn to 7 wt.%Sn alloys) alloys are decreased because the galvanic site was increased with increasing Sn addition. In Mg-9wt.%Sn alloy, however, the corrosion site were changed from Mg/$Mg_2Sn$ interface to ${\alpha}$-Mg/$M_2Sng$ interface in lamellar structure. Preferentially corrosion of ${\alpha}$-Mg/$M_2Sn$ interface in lamellar structure impeded corrosion propagation went into ${\alpha}$-Mg.