• Title/Summary/Keyword: Permanent magnetic machines

Search Result 81, Processing Time 0.035 seconds

Charateristics Analysis on the Field System of Halbach Array by the Permanent Magnet (영구자석에 의한 Halbach 배열 자기시스템의 특성 해석)

  • Jang, S.M.;Seo, J.H.;Choi, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.24-26
    • /
    • 1997
  • A new permanent magnet has been suggested the novel permanent magnet array using advanced analytical approaches in 1979 by Klaus Halbach. In this paper, the Halbach array is utilized to compose the field system. The ferro-magnetic materials of the electric machines cause the fatal energy loses in high frequency. But Halbach any enables to make the various field distribution without ferro-magnetic materials. This paper presents the magnetic characteristics are analyzed by the analytical method and FEM in case that the field system is composed of the Halbach array.

  • PDF

Comparative Analysis on Magnetic Field and Inductances of Slotless Permanent Magnet Machine with Two Types of Winding based on Analytical Method

  • Jang, Seok-Myeong;Kim, Jeong-Man;Jeong, Jae-Hoon;Han, Cheol;Ahn, Ji-Hun;Chang, Duk-Jin;Park, Hyun-Jun
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.190-195
    • /
    • 2012
  • This paper presents an analytical approach to the magnetic field and the inductances of slotless permanent magnet machines with two types of winding. On the basis of a magnetic vector potential and a two-dimensional polar system, analytical solutions for flux density due to a permanent magnet and current are obtained. In addition, self and mutual inductances are obtained using the energy relationship. The analytical results are extensively validated by the nonlinear finite element method and by experimental results.

A Fast Analytic Model of Axial Flux Permanent Magnet Machines with Static/Dynamic Axis Eccentricity

  • Guo, Baocheng;Huang, Yunkai
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.554-560
    • /
    • 2016
  • This paper presents a general analytical model to calculate the characteristics of axial-flux permanent-magnet machines with axis eccentricities. The radial and tangential magnetic flux densities in the air gap under normal conditions were first obtained using a combination of Maxwell's equations and Schwarz-Christoffel (SC) transformation. Next, equations for the radii were deduced to investigate the static/dynamic eccentricities. The back electromotive forces (EMFs) were calculated and compared with those obtained from finite element (FE) analysis. The analytical predictions show good agreement with the FE results. Detection approaches were obtained by comparing with normal conditions, and the analytical model was verified experimentally.

Rotor Loss Analysis in Permanent Magnet High-Speed Machine Using Coupled FEM and Analytical Method

  • Jang Seok-Myeong;Cho Han-Wook;Lee Sung-Ho;Yang Hyun-Sup
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.272-276
    • /
    • 2005
  • This paper deals with the method to calculate the rotor eddy current losses of permanent magnet high-speed machines considering the effects of time/space flux harmonics. The flux harmonics caused by the slot geometry in the stator is calculated from the time variation of the magnetic field distribution obtained by the magneto-static finite element analysis and double Fast Fourier Transform. And, using the analytical approach considering the multiple flux harmonics and the Poynting vector, the rotor losses is evaluated in each rotor composite. Using this method is simple and workable for any kind of stator slot shape for rotor loss analysis.

Pulsed Actuator with Combined Plunger Made of Carbon Steel and Permanent Magnet

  • Dolezel, Ivo;Panek, David;Ulrych, Bohus
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.282-288
    • /
    • 2012
  • A special pulsed electromagnetic actuator is presented whose plunger consists of two parts made of carbon steel and permanent magnet, respectively. The actuator exhibits a high holding force and small consumption of energy. The movement of the plunger is controlled by short current pulses. The static characteristics and other operation properties of the device are modeled numerically.

Analysis on the Core Loss and Windage Loss in Permanent Magnet Synchronous Motor for High-Speed Application (고속으로 운전되는 영구자석형 동기전동기의 철손 및 풍손 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Cho, Han-Wook
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.511-520
    • /
    • 2006
  • Recently, more attention has been paid to the development of high-speed permanent magnet (PM) synchronous motors, since they are conductive to high efficiency, high power density, small size, and low weight. In high-speed PM machines, core loss and windage loss form a larger proportion of the total losses than usual in conventional mid- or low speed machines. This article deals with the analysis on the core loss and windage loss in PM synchronous motor for high-speed application. Using the data information from a manufacturer and non-linear curve fitting, this paper investigates the magnetic behavior and its core losses in the stator core using the electrical steels. And, the windage loss is calculated according to the variation of the rotational speed, motor inner pressure and temperature.

Analysis of Electromagnetic Vibration Sources in 100kW Interior Permanent Magnet Motor for Ship Anti-heeling Pump Considering Eccentricity (선박 자세안정성 향상을 위한 Anti-heeling Pump용 100kW급 IPM 전동기의 편심에 의한 전자기 가진력 분석)

  • Lee, Sun-Kwon;Kang, Gyu-Hong;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2230-2235
    • /
    • 2011
  • The purpose of this paper is to provide the unbalanced magnetic force and vibration mode comparison between two large interior permanent magnet machines(IPM) with different pole-slot combination considering stator and rotor eccentricity. Due to the punching tolerance, the mixed eccentricity of air-gap is inevitable. It will generate the asymmetric magnetic flux density in air-gap, which makes the unbalanced magnetic pull and vibration. The study is focused on the unbalanced magnetic force and their harmonic components according to eccentricity conditions such as static, dynamic and mixed. When the high vibration is produced especially resonance, the obtained results provide clues what eccentricity condition occurs in the machine.

Unbalanced Magnetic Forces in Rotational Unsymmetrical Transverse Flux Machine

  • Baserrah, Salwa;Rixen, Keno;Orlik, Bernd
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.184-192
    • /
    • 2012
  • The torque and unbalanced magnetic forces in permanent magnet machines are resultants of the tangential, axial and normal magnetic forces, respectively. Those are in general influenced by pole-teeth-winding configuration. A study of the torque and unbalanced magnetic forces of a small flux concentrating permanent magnet transverse flux machine (FCPM-TFM) in segmented compact structure is presented in this paper. By using FLUX3D software from Cedrat, Maxwell stress tensor has been solved. Finite element (FE-) magneto static study followed by transient analysis has been conducted to investigate the influence of unsymmetrical winding pattern, in respect to the rotor, on the performance of the FCPM-TFM. Calculating the magnetic field components in the air gap has required an introduction of a 2D grid in the middle of the air gap, whereby good estimations of the forces are obtained. In this machine, the axial magnetic forces reveal relatively higher amplitudes compared to the normal forces. Practical results of a prototype motor are demonstrated through the analysis.

A Design of Linear Motor with High Power Density and High Efficiency for Railway and Magnetic Levitation System (철도 차량용 고출력 고효율 선형 추진시스템 설계)

  • Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.393-396
    • /
    • 2001
  • According to the development of power electronic element(GTO, IGBT) and material for electrical machines(permanent magnet, super conductor), the technology for electrical machines is nowaday rapidly developing. Here with, a novel electrical machine, based on the new conception of transverse flux configuration leads to a considerable Increase in power density and enables simultaneously high efficiency. The transverse flux machine with PM excitation will be applied to gearless direct drives for railway traction system and magnetic levitation system. The designed and measured performance of transverse machine for railway traction system and magnetic levitation system revealed a great potential of system improvements to reduce linear motor mass and increase efficiency.

  • PDF

Design and Dynamic Aanlaysis of Surface-Mounted Type Variable Flux Machines (표면부착형 가변 자속 전동기의 설계 및 동특성 해석)

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Kyu-Seok;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.740-741
    • /
    • 2015
  • This paper presents the design and dynamic analysis of surface-mounted type variable flux permanent magnet(VFPM) machines. VFPM machines with a low-coercive-force (LCF) magnetic material have been studied extensively for their potential to improve the efficiency and extend the flux-weakening range of permaennt magnet (PM) machines. In order to implement the design of the VFPM machines effectively, we perform a characteristic analysis of the LCF magnet with respect to design parameters. The analysis results of the designed VFPM machines are compared with measured results, and the validity of the design of the VFPM machines is confirmed.

  • PDF