• Title/Summary/Keyword: Permanent magnet synchronous machine (PMSM)

Search Result 62, Processing Time 0.026 seconds

Performance Enhancement of RMRAC Controller for Permanent Magnet Synchronous Motor using Disturbance Observer (외란관측기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응 제어기의 성능개선)

  • Jin, Hong-Zhe;Lim, Hoon;Lee, Jang-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.67-69
    • /
    • 2007
  • PMSM (Permanent Magnet Synchronous Motor) current control is a most inner loop of electromechanical driving systems and it plays a foundation role in the hierarchy's control loop of several mechanical machine systems. In this paper, a simple RMRAC control scheme for the PMSM is proposed in the synchronous frame. In the synchronous current model, the input signal is composed of as a calculated voltage by adaptive laws and system disturbances. The gains of feed-forward and feed-back controller are estimated by the proposed e-modification methods respectively, where the disturbances are assumed as filtered current tracking errors. After the estimation of the disturbances from the tracking errors, the corresponding voltage is fed forward to control input to compensate for the disturbances. The proposed method is robust to high frequency disturbances and has a fast dynamic response to time varying reference current trajectory. It also shows a good real-time performance duo to it's simplicity of control structure. Through the simulations considering several cases of external disturbances and experimental results, efficiency of the proposed method is verified

  • PDF

Closed Type Initial Starting Algorithm for PMSM Sensorless Control Using Integrated Speed Angle (폐루프 방식의 속도 적분각을 이용한 PMSM 센서리스 초기기동 알고리즘)

  • Park, Seong-Myeong;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • The cold staring issue of permanent magnet synchronous motors (PMSM) is a chronic problem in the field of PMSM sensorless drives. A traditional starting method, called the I-F method, is widely adopted because of its simple structure. However, when using this method, the pre-defined magnitude and frequency of the starting current should be changed according to the condition of the load and machine inertia. In this paper, a smart and simple algorithm for the cold starting of PMSM is proposed. In the proposed method, an integrated control angle from the estimated electrical rotor speed is used for vector control such as the indirect vector control of the induction machine. Thus, very stable cold starting is performed regardless of the machine load condition or inertia changing.

Design of Permanent Magnet Synchronous Motor for High-Speed Drive (고속 운전용 영구자석형 동기 전동기(PMSM)의 설계)

  • Jang, Seok-Myeong;Cho, Han-Wook;Choi, Jang-Young;Choi, Sang-Ho;Choi, Sang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.141-143
    • /
    • 2005
  • A permanent magnet synchronous motor motor for high-speed drive was developed based on an analytical method. Especially. rated speed and torque according to switching scheme are offered. A prototype machine was also fabricated and tested to confirm the design. Preliminarily obtained experimental data using the prototype machine shows the validity of the design.

  • PDF

A Sensorless Speed Control of Cylindric;31 Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer (적응 적분바이너리 관측기를 이용한 원통형 영구자석 동기전동기의 센서리스 속도제어)

  • 최양광;김영석;한윤석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.152-163
    • /
    • 2004
  • This paper presents a sensorless speed control of cylindrical permanent magnet synchronous motors(PMSM) using an adaptive integral binary observer In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. With the help of integral characteristic, the rotor speed can be finely estimated and utilized for a sensorless speed controller for PMSM. Since the Parameters of the dynamic equations such as machine inertia or a viscosity friction coefficient are lot well known, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that observer may overcome the problem caused by using the dynamic equations and the rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

New Sensorless Control Strategy for a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시무효전력을 이용한 영구자석 동기전동기의 새로운 센서리스 제어)

  • 최양광;김영석;한윤석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • The mechanical informations such as the rotor speed and angle are required to operate the Cylindrical Permanent Magnet Synchronous Motor(PMSM). A resolver or encoder is typically used to supply the mechanical informations. This position sensor adds length to the machine, raises system cost, increases rotor inertia and requires additional devices. As the result, there has been a significant interest in the development of sensorless strategies to eliminate the position sensor. This paper presents an implementation of the new sensorless speed comtrol scheme for a PMSM. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimations error, the estimated speeds are compensated by using an instantaneous reactive power in synchronously rotating reference frame. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

Finite-Time Nonlinear Disturbance Observer Based Discretized Integral Sliding Mode Control for PMSM Drives

  • Zheng, Changming;Zhang, Jiasheng
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1075-1085
    • /
    • 2018
  • To deal with the operation performance degradation of permanent magnet synchronous machine (PMSM) drives with uncertainties and unmodeled dynamics, this paper presents a finite-time nonlinear disturbance observer (FTNDO) based discretized integral sliding mode (DISM) composite control scheme. Based on the reaching-law approach, a DISM speed controller featuring a superior dynamic quality and global robustness against disturbances is constructed. This controller can avoid the reaching phase and overlarge control action. In addition, a sliding mode differentiator based FTNDO is devised and extended to the discrete-time domain for disturbance estimation. The attractive features of the FTNDO are that it can provide a finite-time converging estimation and alleviate the chattering effect in conventional sliding mode observers, while retaining robustness to parameter variations. By feeding the estimate forward to the pre-stage DISM controller, both disturbances and chattering can be significantly suppressed. Moreover, considering the estimation error of a FTNDO caused by discrete sampling, a stability analysis of the composite controller is discussed. Experimental results validate the superiority of the presented scheme.

Sliding Mode Control Based DTC of Sensorless Parallel-Connected Two Five-Phase PMSM Drive System

  • Kamel, Tounsi;Abdelkader, Djahbar;Said, Barkat;Al-Hitmi, M.;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1185-1201
    • /
    • 2018
  • This paper presents a sensorless direct torque control (DTC) combined with sliding mode approach (SM) and space vector modulation (SVM) to achieve mainly a high performance and reduce torque and flux ripples of a parallel-connected two five-phase permanent magnet synchronous machine (PMSM) drive system. In order to increase the proposed drive robustness and decrease its complexity and cost, the rotor speeds, rotor positions, fluxes as well as torques are estimated by using a sliding mode observer (SMO) scheme. The effectiveness of the proposed sliding mode observer in conjunction with the sliding mode control based DTC is confirmed through the application of different load torques for wide speed range operation. Comparison between sliding mode control and proportional integral (PI) control based DTC of the proposed two-motor drive is provided. The obtained speeds, torques and fluxes responses follow their references; even in low and reverse speed operations, load torques changes, and machines parameters variations. Simulation results confirm also that, the ripples of the torques and fluxes are reduced more than 3.33% and 16.66 %, respectively, and the speed overshoots and speed drops are reduced about 99.85% and 92.24%, respectively.

Development of a SPMSM Drives System for Industrial Sewing Machine (SPMSM을 이용한 침상침하용 재봉틀 구동시스템 개발)

  • Park, Nae-Chun;Kim, Sang-Hoon;Park, Sei-Hun;Park, Kyung-Doo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.115-116
    • /
    • 2010
  • 본 논문에서는 PMSM(Permanent Magnet Synchronous Motor)을 이용한 재봉틀 구동시스템을 개발하였다. 전차원 관측기를 이용하여 속도를 추정하고, 벨트(Belt)에 의한 외란 토크를 추정하여 보상하였다. 개발된 재봉틀 구동시스템을 실제 재봉틀에 장착하여 그 효용성을 검증하였다.

  • PDF

Fault detection and classification of permanent magnet synchronous machine using signal injection

  • Kim, Inhwan;Lee, Younghun;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.785-790
    • /
    • 2022
  • Condition monitoring of permanent magnet synchronous motors (PMSMs) and detecting faults such as eccentricity and demagnetization are essential for ensuring system reliability. Motor current signal analysis is the most commonly used precursor for detecting faults in the PMSM drive system. However, the current signature responds sensitively to the load and temperature of the motor, thereby making it difficult to monitor faults in real- applications. Therefore, in this study, a condition monitoring methodology that detects motor faults, including their classification with standstill conditions, is proposed. The objective is to detect and classify faults of PMSMs by using programmable inverter without additional sensors and systems for detection. Both DC and AC were applied through the d-axis of a three-phase motor, and the change in incremental inductance was investigated to detect and classify faults. Simulation with finite element analysis and experiments were performed on PMSMs in healthy conditions as well as with eccentricity and demagnetization faults. Based on the results obtained from experiments, the proposed method was confirmed to detect and classify types of faults, including their severity.