• 제목/요약/키워드: Permanent Magnet Synchronous Generation

검색결과 98건 처리시간 0.03초

확장칼만필터 및 다중모델 기반 영구자석 동기전동기 권선 개방 고장의 검출 및 분류 (Detection and Classification of Open-phase Faults in PMSM Using Extended Kalman Filter and Multiple Model)

  • 김민우;박준형;고상호
    • 항공우주시스템공학회지
    • /
    • 제17권6호
    • /
    • pp.100-107
    • /
    • 2023
  • 영구자석 동기전동기의 권선 개방 고장은 권선이 끊어지거나 인버터 스위치의 고장으로 발생한다. 권선 개방 고장이 발생하면 전동기에 토크리플과 진동이 발생하게 되며, 영구자석 동기전동기를 작동기로 사용하는 항공기 등을 포함하는 운행체의 안전성에 치명적인 영향을 미치게 된다. 따라서 신속한 고장 검출 및 분류가 필수적이다. 본 논문에서는 영구자석 동기전동기의 권선 개방 고장의 검출과 고장 위치 파악을 위한 분류 기법을 제안한다. 제안된 기법은 확장칼만필터를 통해 고장을 검출 후 다중모델 필터를 통해 고장을 분류한다.

DC-DC 컨버터를 이용한 조류발전의 MPPT제어 (The MPPT Control Method of The Seaflow Generation by Using DC-DC converter)

  • 김천규;나재두;김상욱;최정수;이을재;조규민;신재화;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.984-985
    • /
    • 2008
  • In this paper, MPPT(maximum power point tracking) control method of the seaflow generation system using DC-DC converters is proposed. This system consists of a variable speed seaflow generation system with permanent magnet synchronous generator, diode rectifier and DC-DC converter. In this proposed seaflow generation system, diode rectifier and DC-DC converter use for converting AC to DC and maximum power generation control, respectively. Advantages of MPPT control method presented in this paper don’t need to use the characteristic of the seaflow turbine at various seaflow speed and measure the seaflow speed and the rotating speed of seaflow turbine. Therefore, the proposed system has the characteristics of lower cost, lower complexity and higher efficiency. The effectiveness of algorithm is simulated and confirmed through Matlab Simulink.

  • PDF

진도 울돌목 조류발전 시스템 실증 평가 (Empirical Evaluation of Tidal Current Generation System at Ul-Dol-Mok in Jin-do)

  • 문석환;박병건;김지원
    • 한국정밀공학회지
    • /
    • 제33권2호
    • /
    • pp.157-163
    • /
    • 2016
  • The empirical evaluation of grid-connected tidal current generation system is presented in this paper. The Ul-dol-mok in Jin-do has been estimated to have tidal power of 1GW. In order to experiment, HAT (Horizontal Axis Turbine) 3-blade and 20kW grid-connected tidal current generation system was established at Ul-dol-mok in Jin-do. To generate power of generator, the speed reference of the PMSG is generated from the Cp curve and TSR (Tip Speed Ratio) of the designed turbine. The control of the converter connected to the grid is controlled to regulate unity power factor. The result showed that the turbine efficiency and system efficiency is 37 % and 31 %. This was achieved that target rate is 30 %, 20 %, respectively.

영구자석형 풍력-디젤-BESS 복합발전시스템 모델링 및 운전제어 알고리즘에 관한 연구 (Modeling & Operating Algorithm of Hybrid Generation System with PMSG Wind Turbine, Diesel Generator and BESS)

  • 오준석;정의용;박종호;박민수;김재언
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.724-729
    • /
    • 2016
  • Nowadays high-cost energy storage system using flywheel or secondary battery is applying to hybrid generation system with WT(Wind Turbine) and diesel generator in island areas for stable operation. This paper proposes an operating algorithm and modeling method of the hybrid generation system that can operate for variable wind speed and load, which is composed of energy storage system, variable-speed PMSG(Permanent Magnet Synchronous Generator) WT and diesel generator applied in island areas. Initially, the operating algorithm was proposed for frequency and voltage to be maintained within the proper ranges for load and wind speed changes. Also, the modeling method is proposed for variable speed PMSG WT, diesel generator and BESS(Battery Energy Storage System). The proposed operating algorithm and modeling method were applied to a typical island area. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

PMSM의 위치 및 속도 센서리스 벡터제어를 위한 관측기의 설계 (Design of an Observer for Position and Speed Sensorless Vector Control of PMSM)

  • 정동화
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.54-63
    • /
    • 1998
  • This paper proposes a theoretical analysis of a closed loop adaptive speed control system for control the inverter driven permanent magnet synchronous motor(PMSM). This control system utilizes a mechanically sensorless state observer for the generation of all controller feedback information. The observer processes measurements of stator frame voltage and current to produce estimates of rotor position and speed and rotor frame currents. It is shown that the identity observer, when properly formulated, has the same linearized error dynamics as the extended kalman filter(EKF). Consequently, it is shown that the gains within the identity observer can be designed in a manner identical to that of the EKF. In this way, the designability of the nonlinear observer is assured, as is the optimality of its performance for small errors. A sequence of simulation are performed and they demonstrate the successful performance.

  • PDF

A Comparison of Separated and Combined Winding Concepts for Bearingless Centrifugal Pumps

  • Raggl, Klaus;Nussbaumer, Thomas;Kolar, Johann W.
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.243-258
    • /
    • 2009
  • Bearingless centrifugal pump systems are employed in the semiconductor, pharmaceutical and medical industries due to their facility for pumping high purity fluids without particle contamination. Two types of forces have to be generated by the stator units, namely bearing forces for achieving magnetic levitation, and drive forces for producing the needed pump torque. The generation of these forces requires bearing and drive windings, which can be realized as separate bearing and drive coils or as identical, combined coils on the stator claws. In this paper, a detailed comparison between these two winding concepts is undertaken, whereby the copper losses, the power electronics losses, and the achievable pump output pressure are evaluated for both concepts. For each criterion a ratio of improvement is calculated analytically which allows evaluation of the performance of the two winding concepts for any given pump operating point and design. Finally, also practical features such as control complexity, cabling effort and manufacturability are discussed and measurements on prototype systems are carried out to validate the considerations.

배터리 충전을 위한 소형풍력 발전 시스템의 병렬 운전방안에 관한 연구 (A Study on the Parallel Operation Strategy of Small Wind Turbine System for Battery Charging)

  • 손영득;구현근;김장목
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.549-556
    • /
    • 2014
  • This study proposes a parallel operation strategy for small wind turbine systems. A small wind turbine system consists of blade, permanent magnet synchronous generator, three-phase diode rectifier, DC/DC buck converter, and the battery load. This configuration has reliability, simple control algorithm, high efficiency, and low cost. In spite of these advantages, the system stops when unexpected failures occur. Possible failures can be divided into mechanical and electrical parts. The proposed strategy focuses on the failure of electrical parts, which is verified by numerical analysis through equivalent circuit and acquired general formula of small wind power generation systems. Simulation and experimental results prove its efficiency and usefulness.

차세대 전동차용 직구동형 영구자석 전동기 설계기술 (Direct Drive PM Motor Design for Next Generation Locomotive)

  • 김민석;박지성;김대광;김정철;정상용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1860-1865
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM(Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. In this paper, the design of IPMSM satisfying driving specifications for the direct drive has been performed using the advanced F.E.M.

  • PDF

Modeling, Control and Simulation of Microturbine Generator for Distributed Generation System in Smart Grid Application

  • Hong, Won-Pyo;Cho, Jae-Hoon
    • 조명전기설비학회논문지
    • /
    • 제23권7호
    • /
    • pp.57-66
    • /
    • 2009
  • Microturbines system (MTS) are currently being deployed as small scale on-site distributed generators for microgrids and smart grids. In order to fully exploit DG potentialities, advanced integrated controls that include power electronics facilities, communication technologies and advanced modeling are required. Significant expectations are posed on gas microturbines that can be easily installed in large commercial and public buildings. Modeling, control, simulation of microturbine generator based distributed generation system in smart grid application of buildings for both grid-connected and islanding conditions are presented. It also incorporates modeling and simulation of MT with a speed control system of the MT-permanent magnet synchronous generator to keep the speed constant with load variation. Model and simulations are performed using MATLAB, Simulink and SimPowerSystem software package. The model is built from the dynamics of each part with their interconnections. This simplified model is a useful tool for studying the various operational aspects of MT and is also applicable with building cooling, heating and power (BCHP) systems

Effects of Wind Generation Uncertainty and Volatility on Power System Small Signal Stability

  • Shi, Li-Bao;Kang, Li;Yao, Liang-Zhong;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.60-70
    • /
    • 2014
  • This paper discusses the impacts of large scale grid-connected wind farm equipped with permanent magnet synchronous generator (PMSG) on power system small signal stability (SSS) incorporating wind generation uncertainty and volatility. Firstly, a practical simplified PMSG model with rotor-flux-oriented control strategy applied is derived. In modeling PMSG generator side converter, the generator-voltage-oriented control strategy is utilized to implement the decoupled control of active and reactive power output. In modeling PMSG grid side converter, the grid-voltage-oriented control strategy is applied to realize the control of DC link voltage and the reactive power regulation. Based on the Weibull distribution of wind speed, the Monte Carlo simulation technique based is carried out on the IEEE 16-generator-68-bus test system as benchmark to study the impacts of wind generation uncertainty and volatility on small signal stability. Finally, some preliminary conclusions and comments are given.