• Title/Summary/Keyword: Permanent Magnet Synchronous Generation

Search Result 98, Processing Time 0.04 seconds

Investigation of a Thermal Analysis Method for IPMSM in Railway Vehicles (철도차량용 영구자석 동기전동기의 열해석 기법 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.99-103
    • /
    • 2013
  • In this paper, research on the thermal analysis method is reported for the characterization of heat generation while operating an Interior Permanent Magnet Synchronous Motor (IPMSM) for railway vehicles. Efficient cooling of the heat generated in the IPMSM is important because the excessive heat generated from the winding, core and permanent magnets increases the difficulty of continuously operating an IPMSM over long time periods. Therefore, in this study, in order to analyze the heat generation characteristics of the IPMSM for advanced research in the application of IPMSMs to cooling devices, the heat transfer coefficients for each component of the IPMSM were derived and the thermal equivalent circuit was configured to perform thermal analyses. Finally, the validation of the suggested thermal analysis method was performed through comparison with the heat experimental data of an IPMSM prototype.

A Speed Control of Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer without Speed and Position Sensors (적응적분바이너리 관측기를 이용한 위치 및 속도 센서없는 영구자석 동기전동기의 속도제어)

  • Lee, Joung-Hum;Choi, Yang-Kwang;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.83-85
    • /
    • 2003
  • This paper presents a speed control of permanent magnet synchronous motors (PMSM) using an adaptive integral binary observer without speed and position sensors. In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. In order to improve the steady state performance of the binary observer, the proposed adaptive integral binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. The effectiveness of the proposed system is conformed by the experimental results.

  • PDF

A Study on the New Sensorless Control Algorithm for Permanent Magnet Synchronous Motor (영구자석 동기전동기의 새로운 센서리스 제어 알고리즘에 관한 연구)

  • Jun, Byoung-Ho;Choi, Yang-Kwang;Kim, Young-Seok;Han, Yoon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.144-146
    • /
    • 2003
  • This paper presents a new speed sensorless control algorithm of a permanent magnet synchronous motor based on instantaneous reactive power. The proposed algorithm is constructed by instantaneous reactive power in the stationary reference frame and is not affected by mechanical motor parameters, because mechanical equation is not used. The effectiveness of the proposed algorithm is verified by the experimental results.

  • PDF

New Sensorless Vector Control for Permanent Magnet Synchronous Motor using instantaneous Reactive Power (순시 무효전력을 이용한 영구자석 동기전동기의 센서리스 제어)

  • Jun, Byoung-Ho;Choi, Yang-Kwang;Kim, Young-Seok;Shin, Jae-Wha;Han, Yoon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.970-972
    • /
    • 2003
  • This paper presents a new speed sensorless control method of a permanent magnet synchronous motor based on instantaneous reactive power. The proposed algorithm is constructed by instantaneous reactive power in a synchronously rotating reference frame and is not affected by mechanical motor parameters, because mechanical equation is not used. The effectiveness of the proposed system is confirmed by the experimental results.

  • PDF

A Low Cogging Force Permanent Magnet Linear Motor Having 3 Phase 9 Pole 10 Slot Structure (코깅력이 저감된 3상 9극 10슬롯 구조의 영구자석 선형 전동기)

  • Youn, Sung-Whan;Lee, Jong-Jin;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.547-554
    • /
    • 2006
  • The detent force of a permanent magnet linear motor(PMLM) consists of the end force and cogging force, and should be reduced for high precision purpose applications. The cogging force comes from the electromagnetic interaction between the permanent magnets and interior teeth(or the slots) of the stator, and of which the magnitude depends on the ratio of the numbers of the armature and permanent magnet poles as well as the geometrical shape of the permanent magnet and armature pole. In order to reduce the cogging force of a PMLM, this paper proposes a new configuration which has 9 permanent magnet poles and 10 armature winding slots. By theoretical investigation of the principle of cogging force generation and simulating using finite element method, the proposed PMLM configuration is proven to give much less cogging force than the conventional configuration which has 8 permanent magnet poles and 12 armature winding slots. A proper winding algorithm, modified (A, A, A) winding method, for the proposed configuration is also suggested when the proposed PMLM is operating as a 3 phase synchronous machine. A theoretical and numerical calculation shows that the proposed configuration makes slightly bigger back-emf and thrust force under same exciting current and total number of winding turns condition.

A Study on the Thermal Characteristics of 110kW-class IPMSM for Light Railway Transit using the 3-Dimensional Thermal Equivalent Network considering Heat Source by Iron Loss Density Distributions (철손밀도 분포에 의한 열원이 고려된 3차원 열등가회로망을 이용한 경량전철 구동용 110kW급 IPMSM의 열 특성 연구)

  • Park, Chan-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1038-1044
    • /
    • 2013
  • A research on thermal analysis method is conducted for the characterization of heat generation during operation of Interior Permanent Magnet Synchronous Motor(IPMSM) for Light Railway Transits(LRT) in this paper. Efficient cooling of the heat generated in the IPMSM is important because the excessive heat generated from the winding, core and permanent magnet makes it harder for a long time continuous operation of IPMSM. Therefore, in order to analyze the heat generation characteristics of the 110kW-class IPMSM as advanced research for application the IPMSM to the cooling device, the heat transfer coefficients for each component of the 110 kW-class IPMSM were derived and the thermal equivalent network was configured to perform the thermal analysis in this study. Finally, the 110kW-class IPMSM prototype is made and a comparative verification between the test data and the thermal analysis results through its various performance tests are carried out.

Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator (모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어)

  • Kim, Junsik;Woo, Heejin;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

Stand-Alone Pico-Hydro Generation System using a High-Efficiency IPM Synchronous Generator

  • Kurihara, Kazumi;Kubota, Tomotsugu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.121-125
    • /
    • 2014
  • This paper presents a successful stand-alone pico-hydro generation system using a high-efficiency interior permanent-magnet (IPM) synchronous generator. A 1-kW 4-pole V-type IPM generator with low voltage regulation is used for laboratory test in stand-alone hydro energy conversion system. It has been found from experimental results that the constant output voltage is supplied stably by the proposed system under wide speed range.

Dynamic model and simulation of microturbine generation system for grid-connected operation (마이크로터빈발전시스템 계통연계운전을 위한 동적 모델링 및 시뮬레이션)

  • Hong, Won-Pyo;Cho, Jea-Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.105-110
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for grid-connected operation. The system comprises of a permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of Power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in grid-connected operation mode of a DG system. The control strategies for grid connected operation mode of DG system is also presented.

  • PDF

Great capacity Generator of Wind Turbine (대용량 출력 풍력발전기 설계)

  • Hur, Man-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.366-368
    • /
    • 2007
  • Mr. Hur has developed the 7500KW permanent magnet synchronous generator. The 7500KW generator has dual blade system with vertical axis type generation module. The 7500KW generator will generating that it is too expensive and construction payment. The advantages of dual blade system are cheap in generation with better efficiency, and safety compact structure. But also this system has the expensive slide ring for to distribute electrical power.

  • PDF