• Title/Summary/Keyword: Peritoneal lavage

Search Result 23, Processing Time 0.02 seconds

Anti-asthmatic Activities of the Extract of Lonicera japonica (인동 추출물의 항천식 효과)

  • Ryu, Keun-Ho;Han, Chang-Kyun;Rhee, Hae-In;Kim, Taek-Soo;Jung, In-Ho;Lee, Sung-Jae;Im, Guang-Jin;Lee, Kang-Jin;Jeong, Ki-Won;Kim, Dae-Kee;Kim, Key-H.;Cho, Yong-Baik
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.4
    • /
    • pp.377-383
    • /
    • 1999
  • The anti-asthmatic activities of the extract of Lonicera japonica (BuOH fraction) and its mode of action were investigated using several in vitro and in vivo models. Lonicera japonica was extracted with 30% ethanol (v/v) and successively partitioned into BuOH. The BuOH fraction reduced antigen-induced contraction of isolated trachea from sensitized guinea pigs in a concentration-dependent manner. The BuOH fraction also inhibited histamine release from rat peritoneal mast cells induced by antigen or calcium ionophore A23187 ($IC_{50}=0.26$ and 0.32mg/ml, respectively). Eosinophil infiltration into bronchoalveolar lavage fluids induced by aeroallergen challenge in passively sensitized guinea pigs was inhibited by the BuOH fraction at a dose of 800mg/kg (51.7%). In addition, the BuOH fraction inhibited leukotriene $B_4$ prodution in rat basophilic leukemia cells ($IC_{50}=0.42\;mg/ml$) as well as phosphodiesterase 4 (PDE4) isolated from rat brain ($IC_{50}=0.015\;mg/ml$). All results from this study strongly suggest that the BuOH fraction of Lonicera japonica may be useful in the treatment of asthma and its mode of action may be related with inhibition of both 5-lipoxygenase and PDE4 enzyme.

  • PDF

Priming Effect of Endotoxin in Human Alveolar Macrophage (사람 폐포대식세포에서 내독소의 Priming 효과)

  • Chung, Man-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.1
    • /
    • pp.46-53
    • /
    • 1996
  • Background: Endotoxin or lipopolysaccharide(LPS) can prime phagocytic cells such as polymorphonuclear leukocytes, monocytes or animal peritoneal macrophages to generate increased amounts of secretory products such as oxygen free radicals and tumor necrosis factor, which play an important role in developing adult respiratory distress syndrome in gram negative sepsis. Human alveolar macrophages(HAM) are continuously exposed to various stimuli inhaled into the alveoli, and the response to LPS might be different in HAM. Therefore, we investigated the effect of LPS pre-exposure on HAM adhered to plastic surface and A549 cell(type II human alveolar epithelial cell line) monolayer. Methods: HAM were isolated from bronchoalveolar lavage fluid from normal lung of the patients with localized lung cancer and esophageal cancer. LPS was exposed to HAM for 2hrs before or after adherence to plastic surface of 24-well Linbro plate and A549 cell monolayer. And then HAM was stimulated with PMA(phorbol myristate acetate) or fMLP(N-formyl-methionylleucyl-phenylalanine). The amount of hydrogen peroxide($H_2O_2$) production in the supernatant was measured on the principle of peroxidase-dependent oxidation of phenol red by hydrogen peroxide. Results: LPS pre-exposure could not enhance $H_2O_2$ production in neither HAM adhered to plastic surface nor one to A549 cell monolayer. But LPS even in the absence of PMA or fMLP stimulation directly increased $H_2O_2$ release in HAM if added after the adherence to A549 cell monolayer. Conclusion: Endotoxin does not prime HAM, but may directly activate HAM adhered to alveolar epithelial cells. Further investagation will be necessary.

  • PDF

The Change of Antioxidant Enzyme (Superoxide Dismutase, Catalase, Glutathione Peroxidase) in the Endotoxin Infused Rat Lung (내독소 투여후 쥐의 폐조직내 Antioxidant (Superoxide Dismutase, Catalase, GSH-Peroxidase)의 변화에 대한 연구)

  • Song, Jeong-Sup;Kim, Chi-Hong;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyoung;Han, Ki-Don;Moon, Hwa-Sik;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.104-111
    • /
    • 1993
  • Background: Gram-negative bacterial endotoxin induced septicemia is known to be a leading cause in the development of adult respiratory distress syndrome(ARDS). The mechanism of endotoxin induced lung injury is mainly due to the activated neutrophils which injure the capillary endothelial cells by releasing oxidant radical and resulted in pulmonary edema. We studied the change of antioxidant enzyme in the case of large or small, intermittant dose of endotoxin infused rat lungs. Methods: Endotoxin was given to the rat through the peritoneal cavity in the dose of 7 mg/kg body weight in the large dose group and 1 mg/kg for 10 days in the small dose group. Bronchoalveolar lavage (BAL) was done and rats were killed at 6, 12, 24 hours after single endotoxin injection in the large dose group and 3, 7, 10 days after daily endotoxin injection for 10 days in the small dose group. The lungs were perfused with normal saline through the pulmonary artery to remove the blood and were homogenized in 5 volume of 50 mM potassium phosphate buffer containing 0.1 mM EDTA. After centrifuging at 100,000 g for 60 minute, the supernatent was removed and stored at $-70^{\circ}C$ until measuring for superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and protein. Results: We observed the following results. 1) The lung wet/dry weight ratio and albumin concentration in the BAL fluids were increased to peak at 12 hours and neutrophil number in the BAL fluids were peak at 6 hours after endotoxin injection in the large dose group. 2) Cu, Zn SOD (IU/mg protein) was significantly decreased after 6, 12 hours after endotoxin injection in the large dose group. 3) There were no singnificant change in the level of Mn SOD, catalase, GSH-Px after endotoxin injection in both groups. Conclusion: Endotoxin in the large dose group produced the acute pulmonary edema and decreased the Cu, Zn SOD in the lung tissue after injecting endotoxin at 6 and 12 hours. These phenomenon may be due to the cell membrane damage by endotoxin. Further research would be necessary whther giving SOD by intratracheal route or method to increase the synthesis of SOD may lessen the acute lung injury by endotoxin.

  • PDF