• Title/Summary/Keyword: Peripheral blood mononuclear cells(PBMCs)

Search Result 96, Processing Time 0.028 seconds

Preventive Effect of Hwangryunhaedok-tang on Inflammatory Responses in PHA-stimulated Peripheral Blood Mononuclear Cells from Cerebral Infarction Patients

  • Kim, Yun-Ha;Cho, Kwang-Ho;Shin, Sun-Ho;Lee, In;Kim, Eun-Sook;Youn, Myung-Ja;Kim, Jin-Kyung;Moon, Byung-Soon
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.35-43
    • /
    • 2009
  • Objectives: Hwangryunhaedok-tang (HRHDT), a prescription composed of four herbs, has been wi dely used in Oriental Medicine for the treatment of cerebral infarction. However, the mechanisms by which the herbal formula affects on the production of pro- and anti-inflammatory cytokines in cerebral infarction patients remain unknown yet. Methods: The levels of pro- and anti-inflammatory cytokines, including tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6, IL-10, and TGF-${\beta}1$ were determined in peripheral blood mononuclear cells (PBMCs) from cerebral infarction patients under our experimental conditions. Results: The secretory levels of pro- and anti-inflammatory cytokines, including tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6, and IL-10 were significantly increased in phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMCs) from cerebral infarction patients. However, pretreatment with HRHDT significantly inhibited the secretion of pro- and anti-inflammatory in PBMCs. Also, HRHDT induced a significant increase of transforming growth factor (TGF)-b1 in PBMCs. Conclusions: These data indicate that HRHDT may be beneficial in the suppression of inflammatory processes of cerebral infarct through suppression of TNF-$\alpha$, IL-$1{\beta}$, IL-6, and IL-10 and induction of TGF-${\beta}1$.

  • PDF

Impact of peripheral blood mononuclear cells preconditioned by activated platelet supernatant in managing gastric mucosal damage induced by zinc oxide nanoparticles in rats

  • Darwish Badran;Ayman El-Baz El-Agroudy;Amira Adly Kassab;Khaled Saad El-Bayoumi;Zienab Helmy Eldken;Noha Ramadan Mohammed Elswaidy
    • Anatomy and Cell Biology
    • /
    • v.57 no.1
    • /
    • pp.105-118
    • /
    • 2024
  • The world has witnessed tremendous advancements in nano-base applications. Zinc oxide nanoparticles (ZON) are widely used in food industry and medicine. Although their application is of important value, they may cause toxicity to body tissues. Peripheral blood mononuclear cells (PBMCs) proved its efficacy in tissue regeneration especially when it is preconditioned by activated platelet supernatant (APS). The aim of this study is to evaluate the effect of ZON on the gastric mucosa and the therapeutic role of the PBMCs preconditioned by APS in rats. Ten rats were donors and fifty rats were recipients. The recipients were divided into; control group, ZON group (10 mg/kg/day orally for five days) and preconditioned PBMCs group (1×107 once intravenously 24 hours after ZON). Gastric specimens were processed for histological, immunohistochemical, biochemical and quantitative real-time polymerase chain reaction studies. ZON group showed marked structural changes in the gastric mucosa. There was desquamation or deep ulceration of the epithelium. Cytoplasmic vacuoles and pyknotic nuclei were in glandular cells. Reduced proliferating cell nuclear antigen and increased tumor necrosis factor-α were in epithelial cells. There were significant elevation in malondialdahyde and reduction in glutathione, superoxide dismutase, and catalase. Enhancement in mRNA expression of nuclear factor kappa-B and cyclooxygenase-2 was detected. The preconditioned PBMCs group showed significant improvement of all parameters. So, ZON had cytotoxic effects on the gastric mucosa and the preconditioned PBMCs had a therapeutic effect on gastric mucosal damage after ZON.

The Effects of Danchunwhangagam on LPS or DFX-induced Cytokine Production in Peripheral Mononuclear Cells of Cerebral Infarction Patients

  • Son, Ji-Young;Lee, Key-Sang
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.1-11
    • /
    • 2005
  • This study was to investigate the effect of Danchunwhangagam(DCWGG) extract on the production of proinflammatory cytokines in peripheral blood mononuclear cells (PBMCs) from Cerebral infarction(CI) patients. Methods: We examined how the inhibition rate of tumor necrosis factor (TNF)-$\alpha$, interleukin(IL)-1$\alpha$, IL-1$\beta$, IL-6, and IL-8 productions in DCWGG pretreatment PBMCs culture supernatant in the lipopolysaccaride(LPS)- or desferrioxamine(DFX)treated cells compared to unstimulated cells. Results: DCWGG inhibited the productions of TNF-$\alpha$, IL-1$\alpha$, IL-1$\beta$, IL-6, and IL-8 induced by LPS in a dose-dependent manner. Conclusions: DCWGG might have regulatory effects on LPS or DFX-induced cytokine production, which might explain its beneficial effect in the treatment of CI.

  • PDF

Fucoidan Suppresses Prostaglandin E2 Production and Akt Activation in Lipopolysaccharide-Stimulated Porcine Peripheral Blood Mononuclear Cells

  • Park, Geon-Tae;Ahn, Changhwan;Kang, Byeong-Teck;Kang, Ji-Houn;Jeung, Eui-Bae;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.34 no.3
    • /
    • pp.172-177
    • /
    • 2017
  • Fucoidan, a cell wall polysaccharide found in the brown seaweed, is reported to have broad-spectrum biological activities. The objectives of this study were to examine the effect of fucoidan on prostaglandin $E_2$ ($PGE_2$) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated porcine peripheral blood mononuclear cells (PBMCs) and to determine whether these effects are involved in Akt activation. The levels of $PGE_2$ production in the culture supernatants from PBMCs were determined by the enzyme-linked immunosorbent assay (ELISA) kit and the levels of COX-2 mRNA were measured by real time polymerase chain reaction (RT-PCR). Akt activity was determined by Western blot analysis. Fucoidan in LPS-$na{\ddot{i}ve}$ PBMCs has no effect on $PGE_2$ production and COX-2 mRNA expression. Furthermore, fucoidan does not affect Akt activation in LPS- $na{\ddot{i}ve}$ PBMCs. However, $PGE_2$ production and COX-2 mRNA expression on PBMCs were remarkably enhanced by LPS stimulation. Akt activity was also increased by LPS. Increasing effects of $PGE_2$ production and COX-2 mRNA expression in PBMCs induced by LPS were suppressed by addition of fucoidan. In addition, fucoidan reduced an increase in Akt activity in LPS-stimulated PBMCs. These results suggested that fucoidan exerts potent anti-inflammatory properties by suppression of $PGE_2$ production, COX-2 mRNA expression and Akt activation in LPS-stimulated PBMCs.

Fucoidan Upregulates Chemotactic Activity of Canine Peripheral Blood Polymorphonuclear Cells Through Interleukin-8 from Peripheral Blood Mononuclear Cells in vitro (개 말초혈액 다형핵백혈구의 유주활성에 있어 fucoidan의 효과)

  • Jeon, Chun-Jin;Kim, Soo-Hyun;Kim, Sung-Soo;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.29 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • Fucoidan has been shown to enhance immune function. The objective of this study was to examine the in vitro effect of fucoidan on the chamotactic activity of canine peripheral blood polymorphonuclear cells (PMNs). The chemotactic activity of PMNs was evaluated by method of a modified Boyden chamber assay. The amount of interleukin (IL)-8 in the culture supernatants from peripheral blood mononuclear cells (PBMCs) treated with fucoidan was determined by means of ELISA. Fucoidan itself could not have chemoattract effects for PMNs. However, the chemotaxis of PMNs was remarkably enhanced by culture supernatant from PBMCs treated with fucoidan. Similarly, it was also increased by recombinant canine (rc) IL-8. These chemotactic activities of PMNs were inhibited by addition of anti-rcIL-8 polyclonal antibody (pAb). The amount of IL-8 in the culture supernatant from PBMCs was shown to increase upon treatment of fucoidan as compared with that of untreated PBMCs culture supernatant. These results suggest that fucoidan upregulates the chemotaxis of PMNs, which is mainly mediated by IL-8 released from fucoidanstimulated PBMCs.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

Quercetin Reduces Chemotactic Activity of Porcine Peripheral Blood Polymorphonuclear Cells

  • Hwa, Gyeong-Rok;Ahn, Changhwan;Kim, Hakhyun;Kang, Byeong-Teck;Jeung, Eui-Bae;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.39 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Quercetin, a flavonoid found in fruits and vegetables, exhibits a strong anti-inflammatory activity. The objective of this study was to examine the effect of quercetin on chemotactic activity of peripheral blood polymorphonuclear cells (PMNs) to culture supernatant from peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS). In addition, we determined whether this effect is related to interleukin (IL)-8 and changes in cytoskeleton. The chemotactic activity of PMNs was evaluated by a modified Boyden chamber assay. Total cellular filamentous (F)-actin levels were measured by method of fluorescence microscopy. The levels of IL-8 mRNA and protein were measured by real time polymerase reaction method and enzyme-linked immunosorbent assay, respectively. Quercetin (0-50 µM) itself has no chemoattractant effect for PMNs. The culture supernatant from PBMCs (2 × 106 cells/mL) treated with LPS (1 ㎍/mL) showed remarkable increase in chemotaxis of PMNs. However, this effect was reduced dose-dependently by treatment with quercetin. In addition, PBMCs treated with LPS revealed enhanced levels in IL-8 protein and mRNA. Co-treatment of LPS with quercetin (50 µM) in PBMCs decreased IL-8 production and expression. Treatment of quercetin (0-50 µM) on PMNs to rpIL-8 (10 nM) decreased dose-dependently the chemotactic activity of PMNs. Treatment of quercetin on PMNs to IL-8 also reduced their total cellular F-actin level. These results suggested that quercetin attenuates chemotactic activity of PMNs, which is mediated by down-regulation of IL-8 production from LPS-stimulated PBMCs and inhibition of F-actin polymerization in PMNs.

Adipose-derived stem cells decolonize skin Staphylococcus aureus by enhancing phagocytic activity of peripheral blood mononuclear cells in the atopic rats

  • Lee, Jaehee;Park, Leejin;Kim, Hyeyoung;Rho, Bong-il;Han, Rafael Taeho;Kim, Sewon;Kim, Hee Jin;Na, Heung Sik;Back, Seung Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • Staphylococcus aureus (S. aureus) is known to induce apoptosis of host immune cells and impair phagocytic clearance, thereby being pivotal in the pathogenesis of atopic dermatitis (AD). Adipose-derived stem cells (ASCs) exert therapeutic effects against inflammatory and immune diseases. In the present study, we investigated whether systemic administration of ASCs restores the phagocytic activity of peripheral blood mononuclear cells (PBMCs) and decolonizes cutaneous S. aureus under AD conditions. AD was induced by injecting capsaicin into neonatal rat pups. ASCs were extracted from the subcutaneous adipose tissues of naïve rats and administered to AD rats once a week for a month. Systemic administration of ASCs ameliorated AD-like symptoms, such as dermatitis scores, serum IgE, IFN-γ+/IL-4+ cell ratio, and skin colonization by S. aureus in AD rats. Increased FasL mRNA and annexin V+/7-AAD+ cells in the PBMCs obtained from AD rats were drastically reversed when co-cultured with ASCs. In contrast, both PBMCs and CD163+ cells bearing fluorescent zymosan particles significantly increased in AD rats treated with ASCs. Additionally, the administration of ASCs led to an increase in the mRNA levels of antimicrobial peptides, such as cathelicidin and β-defensin, in the skin of AD rats. Our results demonstrate that systemic administration of ASCs led to decolonization of S. aureus by attenuating apoptosis of immune cells in addition to restoring phagocytic activity. This contributes to the improvement of skin conditions in AD rats. Therefore, administration of ASCs may be helpful in the treatment of patients with intractable AD.

Changes of Immunoglobulins and Lymphocyte Subpopulations in Peripheral Blood from Holstein Calves Challenged with Escherichia coli Lipopolysaccharide

  • Kim, M.H.;Yun, C.H.;Kim, G.R.;Ko, J.Y.;Lee, Jung-Joo;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.696-706
    • /
    • 2011
  • The objective of this study was to characterize serum immunoglobulins and lymphocytes subpopulations in the peripheral blood mononuclear cells (PBMCs) of Holstein calves in response to lipopolysaccharide (LPS) challenge from Escherichia coli. Fourteen calves received subcutaneous injections of E. coli LPS at 10 weeks of age, and six calves were injected with saline as a control. The concentrations of total serum IgG and the relative amount of LPS-specific IgG in calves challenged with LPS were significantly higher (p<0.05) compared to control animals and LPS challenge significantly increased (p<0.05) the percentage of $CD5^+$ and $CD21^+$ T cells in PBMCs. Meanwhile, LPS challenge significantly increased (p<0.05, p<0.01) the percentage of $CD8^+$ and $CD25^+$ T cells in peripheral blood mononuclear cells (PBMC) at 7 and 14 Day-post LPS challenge (DPLC), respectively. The composition of $CD4^+CD25^+$ T cells and $CD8^+CD25^+$ T cells from calves challenged with LPS was also higher (p<0.05 and p = 0.562, respectively) than those of control calves at 14 DPLC. In conclusion, LPS challenge not only induces production of IgG with expression of B-cell immune response related cell surface molecules, but also stimulates activation of T-lymphocytes in PBMC. Our results suggest that LPS challenge in calves is a good model to elucidate cellular immune response against Gram-negative bacterial infections.

In vitro effects of monophosphoryl lipid A and Poly I:C combination on equine cells

  • Dong-Ha Lee;Eun-bee Lee;Jong-pil Seo ;Eun-Ju Ko
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.37.1-37.14
    • /
    • 2023
  • Background: Toll-like receptor (TLR) agonists have been used as adjuvants to modulate immune responses in both animals and humans. Objectives: The objective of this study was to evaluate the combined effects of the TLR 4 agonist monophosphoryl lipid A (MPL) and the TLR 3 agonist polyinosinic:polycytidylic acid (Poly I:C) on equine peripheral blood mononuclear cells (PBMCs), monocyte-derived dendritic cells (MoDCs), and bone marrow-derived mesenchymal stromal cells (BM-MSCs). Methods: The PBMCs, MoDCs, and BM-MSCs collected from three mixed breed horses were treated with MPL, Poly I:C, and their combination. The mRNA expression of interferon gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-12p40, tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) was determined using real-time polymerase chain reaction. Results: The combination of MPL and Poly I:C significantly upregulated immunomodulatory responses in equine cells/ without cytotoxicity. The combination induced greater mRNA expression of pro-inflammatory cytokines IFN-γ and IL-6 than MPL or Poly I:C stimulation alone in PBMCs. In addition, the combination induced significantly higher mRNA expression of IL-1β, IL-6, and IL-12p40 in MoDCs, and IL-8, MCP-1, and VEGF in BM-MSCs compared to stimulation with a single TLR agonist. Conclusions: The combination of MPL and Poly I:C can be used as a potential adjuvant candidate for vaccines to aid in preventing infectious diseases in horses.