• Title/Summary/Keyword: Periosteal-derived cells

Search Result 15, Processing Time 0.02 seconds

Use of Peristeum as a Source of Endothelial-like Cells (혈관내피유사세포 채취의 원천으로 골막의 활용)

  • Park, Bong-Wook;Kim, Shin-Won;Kim, Uk-Kyu;Hah, Young-Sool;Kim, Jin-Hyun;Kim, Deok-Ryong;Sung, Iel-Young;Cho, Yeong-Cheol;Son, Jang-Ho;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.385-391
    • /
    • 2011
  • Purpose: The periosteum is a well-known source of osteogenic precursor cells for tissue-engineered bone formation. However, cultured endothelial or endothelial-like cells derived from periosteum have not yet been investigated. This study focused on endothelial-like cell culture from the periosteum. Methods: Periosteal tissues were harvested from the mandible during surgical extraction of lower impacted third molars. The tissues were treated with 0.075% type I collagenase in phosphate-buffered saline (PBS) for 1 hr at $37^{\circ}C$ to release cellular fractions. The collagenase was inactivated with an equal volume of DMEM/10% fetal bovine serum (FBS) and the infranatant was centrifuged for 10 min at 2,400 rpm. The cellular pellet was filtered through a $100{\mu}m$ nylon cell strainer, and the filtered cells were centrifuged for 10 min at 2,400 rpm. The resuspended cells were plated into T25 flasks and cultured in endothelial cell basal medium (EBM)-2. Results: Among the hematopoietic markers, CD146 was more highly expressed than CD31 and CD34. The periosteal-derived cells also expressed CD90 and CD166, mesenchymal stem cell markers. Considering that the expression of CD146 was constant and that the expression of CD90 was lower at passage 5, respectively, the CD146 positive cells in passage 5 were isolated using the magnetic cell sorting (MACS) system. These CD146 sorted, periosteal-derived cells formed tube-like structures on Matrigel. The uptake of acetylated, low-density lipoprotein, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-Ac-LDL) was also examined in these cells. Conclusion: These results suggest that the CD146-sorted positive cells can be referred to as periosteal-derived CD146 positive endothelial-like cells. In particular, when a co-culture system with endothelial and osteoblastic cells in a three-dimensional scaffold is used, the use of periosteum as a single cell source would be strongly beneficial for bone tissue engineering.

Osteogenic Potential of the Periosteum and Periosteal Augmentation for Bone-tunnel Healing

  • Youn Inchan;Suh J-K Francis;Choi Kuiwon
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2005
  • Periosteum and periosteum-derived progenitor cells have demonstrated the potential for stimulative applications in repairs of various musculoskeletal tissues. It has been found that the periosteum contains mesenchymal progenitor cells capable of differentiating into either osteoblasts or chondrocytes depending on the culture conditions. Anatomically, the periosteum is a heterogeneous multi-layered membrane, consisting of an inner cambium and an outer fibrous layer. The present study was designed to elucidate the cellular phenotypic characteristics of cambium and fibrous layer cells in vitro, and to assess whether structural integrity of the tendon in the bone tunnel can be improved by periosteal augmentation of the tendon­bone interface. It was found the cells from each layer showed distinct phenotypic characteristics in a primary monolayer culture system. Specifically, the cambium cells demonstrated higher osteogenic characteristics (higher alkaline phosphatase and osteocalcin levels), as compared to the fibrous cells. Also in vivo animal model showed that a periosteal augmentation of a tendon graft could enhance the structural integrity of the tendon-bone interface, when the periosteum is placed between the tendon and bone interface with the cambium layer facing toward the bone. These findings suggest that extra care needs to be taken in order to identify and maintain the intrinsic phenotypes of the heterogeneous cell types within the periosteum. This will improve our understanding of periosteum in applications for musculoskeletal tissue repairs and tissue engineering.

The effect of biomechanical stimulation on osteoblast differentiation of human jaw periosteum-derived stem cells

  • Lee, Ju-Min;Kim, Min-Gu;Byun, June-Ho;Kim, Gyoo-Cheon;Ro, Jung-Hoon;Hwang, Dae-Seok;Choi, Byul-Bora;Park, Geun-Chul;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.7.1-7.9
    • /
    • 2017
  • Background: This study was to investigate the effect of biomechanical stimulation on osteoblast differentiation of human periosteal-derived stem cell using the newly developed bioreactor. Methods: Human periosteal-derived stem cells were harvested from the mandible during the extraction of an impacted third molar. Using the new bioreactor, 4% cyclic equibiaxial tension force (0.5 Hz) was applied for 2 and 8 h on the stem cells and cultured for 3, 7, and 14 days on the osteogenic medium. Biochemical changes of the osteoblasts after the biomechanical stimulation were investigated. No treatment group was referred to as control group. Results: Alkaline phosphatase (ALP) activity and ALP messenger RNA (mRNA) expression level were higher in the strain group than those in the control group. The osteocalcin and osteonectin mRNA expressions were higher in the strain group compared to those in the control group on days 7 and 14. The vascular endothelial growth factor (VEGF) mRNA expression was higher in the strain group in comparison to that in the control group. Concentration of alizarin red S corresponding to calcium content was higher in the strain group than in the control group. Conclusions: The study suggests that cyclic tension force could influence the osteoblast differentiation of periosteal-derived stem cells under optimal stimulation condition and the force could be applicable for tissue engineering.

Use of Human Adipose Tissue as a Source of Endothelial Cells (혈관내피세포 채취의 원천으로 인간 지방조직의 활용)

  • Park, Bong-Wook;Hah, Young-Sool;Kim, Jin-Hyun;Cho, Hee-Young;Jung, Myeong-Hee;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Jang, Jung-Hui;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.

An Analysis for Effects of Stain Family Drugs on Osteogenic Differentiation using Human Periosteum-derived Mesenchymal Stem Cells (스타틴(statin) 약물이 성체줄기세포의 골분화에 미치는 영향)

  • Moon, Dong Kyu;Yun, Jeong-Won;Kim, Bo Gyu;Lee, A Ram;Moon, Sun Young;Byun, June-Ho;Hwang, Sun-Chul;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1337-1344
    • /
    • 2019
  • Osteoporosis is characterized by a reduction in bone mass and typically manifests as an increase in fractures. Because this disease is common in elderly populations and lifespans are rapidly increasing, the incidence of osteoporosis has also grown. Most drugs currently used for osteoporosis treatment target osteoclasts in the bone tissue to prevent absorption. However, these medications also cause certain side effects and, furthermore, cannot increase bone mass. Thus, in order to control osteoporosis, regenerative medicine that utilizes adult stem cells and osteoblasts has been extensively studied. Statins, also known as 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, are cholesterol-lowering drugs that have been widely prescribed for cardiovascular diseases. Interestingly, recent studies have reported the beneficial effects of various statins on bone formation via the activation of osteoblasts. Thus, the current study investigated the effects of seven statin-family drugs on osteoblast activity during osteogenic differentiation using adult stem cells from human periosteal tissue. Specifically, statin effects on alkaline phosphatase activity, an early marker of bone cell differentiation, and on calcium deposit, a late marker of bone cell differentiation, were assessed. The results demonstrate that some statins (for example, pitavastatin and pravastatin) have a weak but positive effect on bone formation, and the findings therefore suggest that statin treatments can be a novel modulator for osteogenic differentiation and regenerative medicine using periosteal stem cells.