• Title/Summary/Keyword: Periods of rainfall

Search Result 301, Processing Time 0.035 seconds

Watershed Scale Drought Assessment using Soil Moisture Index (토양수분지수를 이용한 유역단위 가뭄 평가)

  • Kim, Ok-Kyoung;Choi, Jin-Yong;Jang, Min-Won;Yoo, Seung-Hwan;Nam, Won-Ho;Lee, Joo-Heon;Noh, Jae-Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.3-13
    • /
    • 2006
  • Although the drought impacts are comparably not catastrophic, the results from the drought are fatal in various social and economical aspects. Different from other natural hazards including floods, drought advances slowly and spreads widely, so that the preparedness is quite important and effective to mitigate the impacts from drought. Soil moisture depletion directly resulted from rainfall shortage is highly related with drought, especially for crops and vegetations, therefore a drought can be evaluated using soil moisture conditions. In this study, SMI (Soil Moisture Index) was developed to measure a drought condition using soil moisture model and frequency analysis for return periods. Runs theory was applied to quantify the soil moisture depletions for the drought condition in terms of severity, magnitude and duration. In 1994, 1995, 2000, and 2001, Korea had experienced several severe droughts, so the SMI developed was applied to evaluate applicability in the mid-range hydrologic unit watershed scale. From the results, SMI demonstrated the drought conditions with a quite sensitive manner and can be used as an indicator to measure a drought condition.

Surveying the Daily Pumpage for Irrgating Paddy Rice in the Han River Basin (한강수계의 관개용수 일별 양수량 조사)

  • 임상준;박승우;김상민;김현준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.57-65
    • /
    • 2000
  • The objective of this paper are to present a realistic methodology to estimate the daily water supply rates form irrigation pumping stattions, to validate it with the field data, and to report the daily irrigation pumping rates from the Han river basin. Five-year historical pumping records were collected from seventy-three pumping stations in the Han river basin. And the daily pumping rates were estimated from the electrical consumption records. The pumping patterns from the stations were analyzed and the results were applied to ungauged pumping stations in the basin. The method was appliedto five stations which were field monitored during the irragation periods in 1998. The relative errors between the observed and simulated water pumpage ranged from 1.4 to 7.0 percent. This indicates that the proposed method is valid to apply for estimating the pumping rates for agricultural lands. During 1993 to 1997, the annual average water pumpaging from the Han river and the tributaries were 350 million cubic meter. The annual water supply from the pumping stations varied from 973 to 1.377 mm in depth and the mean was 1,170 mm. The major factor affecting the annual variations was attributed to the rainfall during the growing seasons.

  • PDF

Determination of the Optimal Return Period for River Design using Bayes Theory (베이즈 이론을 활용한 적정 하천설계빈도 결정)

  • Ryu, Jae Hee;Lee, Jin-Young;Kim, Ji Eun;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.793-800
    • /
    • 2018
  • It is necessary to determine an optimal design frequency for establishing stable flood control against frequent flood disasters. Depending on the importance of river and regional characteristics, design return periods are suggested from at least 50 years up to 200 years for river design. However, due to the wide range of applications, it is not desirable to reflect the geographical and flood control characteristics of river. In this study, Bayes theory was applied to seven evaluation factors to determine the optimal design return period of rivers in Chungcheongnam-do; urbanization flooded area, watershed area, basin coefficient, slope, water system and stream order, range of backwater effect, abnormal rainfall occurrence frequency. The potential flood damage (PFD) capacity was estimated considering climate change and the appropriate design return period was determined by analyzing the capacity of each district. We compared the design return periods of 382 rivers in Chungcheongnam-do with the existing design return periods. The number of rivers that were upgraded from the existing return period were 65, which have relatively large flooding areas and have large PFDs. Whereas, the number of rivers that were downgraded were 169.

Estimation of Storm-centered Areal Reduction Factors by Durations and Return Periods Using Radar Rainfall (지속시간 및 재현기간에 따른 레이더 강우 호우중심형 ARF의 산정)

  • Kim, Eunji;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.163-163
    • /
    • 2017
  • 설계홍수량은 수공구조물의 규모를 결정하는데 이용되며, 국내에서는 설계홍수량을 산정하기 위하여 지속시간과 재현기간에 따라 면적강우량을 추정한다. 지점강우량은 제한된 지역을 대표하는 값이므로 지점강우량을 기준면적에 대한 면적강우량으로 환산하기 위하여 면적우량환산계수(ARF, Areal Reduction Factor)를 적용한다. ARF를 산정하는 방법은 과거 관측자료를 활용하여 산정하는 경험적 방법(empirical method)이 주를 이루고 있으며, 경험적 방법은 크게 면적고정형(Fixedarea) 방법과 호우중심형(Storm-centered) 방법으로 분류된다. 면적고정형 방법은 국내 하천설계 기준에서 적용하고 있는 방법으로 면적강우 및 지점강우의 연 최대치를 독립적으로 빈도 해석하여 ARF를 산정하므로 실제 강우사상으로부터 산정된 값과 편차를 보인다. 반면 호우중심형 방법은 각각의 강우사상을 분석 대상 유역 중심에 공간 전이시켜 최대 강우량이 발생하도록 하는 방법으로, 레이더 강우를 활용하면 실제 강우사상의 공간분포 특성을 반영한 현실적인 ARF 산정이 가능하다. 본 연구에서는 국내 기상청에서 제공하는 홍수기(6-9월)의 10분 단위 단일편파 전국합성 레이더 자료를 활용하여 지속시간 1, 3, 6, 12, 24시간에 대한 호우중심형 ARF를 산정하였고, 면적강우 산정 시, 강우사상의 면적을 원형 또는 타원형으로 선정하여 강우의 형상 및 방향성을 고려하였다. 또한 레이더 강우의 중심강우를 지상강우 자료로 산정된 확률강우량 기준으로 분류하여 재현기간별 호우중심형 ARF를 산정하였으며, 이를 통해 기준면적, 지속시간, 재현기간에 따른 ARF의 특성을 분석하고자 하였다.

  • PDF

Characteristics of Pollutant Washed-off from Highways with Storm Runoff Duration (아스팔트 포장 고속도로의 강우 지속시간별 오염물질 유출 경향)

  • Kim Lee-Hyun;Lee Eun-Ju;Ko Seok-Oh;Kang Hee-Man
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.99-106
    • /
    • 2006
  • During the dry periods, many types of pollutant are accumulating on the paved surface by vehicle activities. Particularly, the highways are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicles. The accumulated pollutants in highways are washed-off during a rainfall event and are highly contributing on water quality of receiving water bodies. The stormwater runoff from the highways are containing various pollutants such as metals, oil & grease and toxic chemicals originated from vehicles. Therefore, this research is performed to find pollutant characteristics in the magnitude of statistical pollutant concentrations during storm periods. During the monitoring periods, the first-flush phenomenon is visibly occurred on most storm events, which is confirmed from hydro- and pollute-graphs. The 95% confidence intervals of washed-off pollutant concentration are ranged to 154.7-257.1 mg/L for 755,138.9-197.6 mg/L for COD, 3.5-6.4 mg/L for oil & grease, 6.3-9.2 mg/L for TN and 2.3-3.31 mg/L for TP. The first flush effect is mostly occurred within initial 30 min of storm duration.

  • PDF

Evalution of Input and Output Amount of Silica in Sandy Paddy Soil during Growing Periods of Rice Plant (벼 재배과정중 사질답에서 규소의 유, 출입량 평가)

  • Seo, Young-Jin;Kim, Jong-Su;Kim, Chang-Bae;Park, Man;Lee, Dong-Hoon;Choi, Choong-Lyeal;Choi, Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.162-168
    • /
    • 2002
  • The silica uptake of rice plant(Oryza sativa L.) and a potential capacity of paddy soil as a source of silica supply for rice plant was studied under field experimental condition. Amount of Si from irrigation water, rainfall, which was a source of silica supply, and percolating rate of water through paddy soil profile as a source of silica loss from paddy soil, was investigated. Rice plants were grown in three different conditions, which included Control as non-fertilized, RDA's recommandation(NPK, Urea-Fused phophate-Potassium chloride=$110-45-57kg\;ha^{-1}$) and RDA's recommandation with supplement of silicate fertilizer(NPK+Si, Urea-Fused phosphate-Potassium chloride+Si=$110\;N-45\;P_2O_5-57\;K_2O+267.2\;Si\;kg\;ha^{-1}$). An amount of silica supply from rainfall was $0.5kg\;ha^{-1}$ and average amount of silica supplied from irrigation water $42.5kg\;ha^{-1}$, ranging from $28.1kg\;ha^{-1}$ to $58.8kg\;ha^{-1}$. Silica amount percolated through the soil profile have uniform trend comparatively showing $62.9kg\;ha^{-1}$ in Control, $64.8kg\;ha^{-1}$ in NPK treatment and $62.9kg\;ha^{-1}$ in NPK+Si treatment. Silica uptaked by Rice plant was $335.6kg\;ha^{-1}$ in Control, $406.6kg\;ha^{-1}$ in NPK+Si treatment and $471.1kg\;ha^{-1}$ in NPK+Si treatment. The difference between an amount of Si input(from rainfall, irrigation water and silicate fertilizer) and an amount of Si output(percolated Si in soil, uptaked Si by rice plant) was $357.4kg\;ha^{-1}$ in control, $412.1kg\;ha^{-1}$ in NPK treatment and $238.2kg\;ha^{-1}$ in NPK+Si treatment. Results of our study imply that paddy soil is a potential pool as a source of Si supply during growing periods of rice plant.

An Empirical Model for Forecasting Alternaria Leaf Spot in Apple (사과 점무늬낙엽병(斑點落葉病)예찰을 위한 한 경험적 모델)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.4 s.69
    • /
    • pp.221-228
    • /
    • 1986
  • An empirical model to predict initial disease occurrence and subsequent progress of Alternaria leaf spot was constructed based on the modified degree day temperature and frequency of rainfall in three years field experiments. Climatic factors were analized 10-day bases, beginning April 20 to the end of August, and were used as variables for model construction. Cumulative degree portion (CDP) that is over $10^{\circ}C$ in the daily average temperature was used as a parameter to determine the relationship between temperature and initial disease occurrence. Around one hundred and sixty of CDP was needed to initiate disease incidence. This value was considered as temperature threshhold. After reaching 160 CDP, time of initial occurrence was determined by frequency of rainfall. At least four times of rainfall were necessary to be accumulated for initial occurrence of the disease after passing temperature threshhold. Disease progress after initial incidence generally followed the pattern of frequency of rainfall accumulated in those periods. Apparent infection rate (r) in the general differential equation dx/dt=xr(1-x) for individual epidemics when x is disease proportion and t is time, was a linear function of accumulation rate of rainfall frequency (Rc) and was able to be directly estimated based on the equation r=1.06Rc-0.11($R^2=0.993$). Disease severity (x) after t time could be predicted using exponential equation $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$ derived from the differential equation, when $x_0$ is initial disease, $b_0\;and\;b_1$ are constants. There was a significant linear relationship between disease progress and cumulative number of air-borne conidia of Alternaria mali. When the cumulative number of air-borne conidia was used as an independent variable to predict disease severity, accuracy of prediction was poor with $R^2=0.3328$.

  • PDF

Improvement of Mid-and Low-flow Estimation Using Variable Nonlinear Catchment Wetness Index (비선형 유역습윤지수를 이용한 평갈수기 유출모의개선)

  • Hyun, Sukhoon;Kang, Boosik;Kim, Jin-Gyeom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.779-789
    • /
    • 2016
  • The effective rainfall is calculated considering the soil moisture. It utilizes observed data directly in order to incorporate the soil moisture into the rainfall-runoff model, or it calculates indirectly within the model. The rainfall-runoff model, IHACRES, used in this study computes the catchment wetness index (CWI) first varying with temperature and utilize it for estimating precipitation loss. The nonlinear relationship between the CWI and the effective rainfall in the Hapcheondam watershed was derived and utilized for the long-term runoff calculation. The effects of variable and constant CWI during calibration and validation were suggested by flow regime. The results show the variable CWI is generally more effective than the constant CWI. The $R^2$ during high flow period shows relatively higher than the ones during normal or low flow period, but the difference between cases of the variable and constant CWI was insignificant. The results indicates that the high flow is relatively less sensitive to the evaporation and soil moisture associated with temperature. On the other hand, the variable CWI gives more desirable results during normal and low flow periods which means that it is crucial to incorporate evaporation and soil moisture depending on temperature into long-term continuous runoff simulation. The NSE tends to decrease during high flow period with high variability which could be natural because NSE index is largely influenced by outliers of underlying variable. Nevertheless overall NSE shows satisfactory range higher than 0.9. The utilization of variable CWI during normal and low flow period would improve the computation of long-term rainfall-runoff simulation.

Application of Remote Sensing Techniques to Survey and Estimate the Standing-Stock of Floating Debris in the Upper Daecheong Lake (원격탐사 기법 적용을 통한 대청호 상류 유입 부유쓰레기 조사 및 현존량 추정 연구)

  • Youngmin Kim;Seon Woong Jang ;Heung-Min Kim;Tak-Young Kim;Suho Bak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.589-597
    • /
    • 2023
  • Floating debris in large quantities from land during heavy rainfall has adverse social, economic, and environmental impacts, but the monitoring system for the concentration area and amount is insufficient. In this study, we proposed an efficient monitoring method for floating debris entering the river during heavy rainfall in Daecheong Lake, the largest water supply source in the central region, and applied remote sensing techniques to estimate the standing-stock of floating debris. To investigate the status of floating debris in the upper of Daecheong Lake, we used a tracking buoy equipped with a low-orbit satellite communication terminal to identify the movement route and behavior characteristics, and used a drone to estimate the potential concentration area and standing-stock of floating debris. The location tracking buoys moved rapidly during the period when the cumulative rainfall for 3 days increased by more than 200 to 300 mm. In the case of Hotan Bridge, which showed the longest distance, it moved about 72.8 km for one day, and the maximum moving speed at this time was 5.71 km/h. As a result of calculating the standing-stock of floating debris using a drone after heavy rainfall, it was found to be 658.8 to 9,165.4 tons, with the largest amount occurring in the Seokhori area. In this study, we were able to identify the main concentrations of floating debris by using location-tracking buoys and drones. It is believed that remote sensing-based monitoring methods, which are more mobile and quicker than traditional monitoring methods, can contribute to reducing the cost of collecting and processing large amounts of floating debris that flows in during heavy rain periods in the future.

Air Quality Monitoring in Residential Areas near Ports and Industrial Complexes in Busan (부산시 항만 및 산단 인근 주거지역 대기질 모니터링과 분기별 특성확인)

  • Hyunji Ju;Seungho Lee;Minjung Kim;Gabeen Lee;Young-Seoub Hong
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.3
    • /
    • pp.181-190
    • /
    • 2024
  • Background: Air pollutants have been reported to have harmful effects on human health. Busan is a vulnerable area in terms of air quality due to the installation of various industrial complexes, particularly the port industry. However there is limited research data on the ambient air quality of residential areas near ports and industrial complexes. Objectives: This study aimed to determine the quarterly levels of air pollutants near industrial complexes and ports and to identify trends and characteristics of air pollutant exceedances. Methods: Air measurements were conducted quarterly. The measured air pollutants included O3, SO2, CO, NO2, PM10, and PM2.5. PM10 and PM2.5 were measured using BAM-1020 equipment, while O3, SO2, CO, and NO2 were measured using AP-370 Series equipment. The quarterly concentration levels of air pollutants were determined, and the influence of precipitation and commuting hours on fine particulate matter was examined. Analysis of variance (ANOVA) was conducted to determine if there was significance between the concentrations of fine particulate matter during commuting hours and non-commuting hours. Results: The concentrations of air pollutants were generally higher in the first and second quarters. Furthermore, the concentrations of PM10 and PM2.5 tended to decrease continuously following consecutive rainfall, with concentrations at the end of rainfall periods lower than those observed at the beginning. The frequency of exceeding average concentrations of PM10 and PM2.5 was higher on weekdays. Moreover, the average concentrations of PM10 and PM2.5 during weekday commuting hours were higher compared to non-commuting hours. Conclusions: The concentrations of air pollutants in the survey area were found to be higher than the overall average in Busan. Based on this study, continuous air quality monitoring is necessary for residential areas near industrial complexes and ports. For further research, health biomonitoring of residents in these areas should be conducted to assess their exposure levels.