• Title/Summary/Keyword: Periods of rainfall

Search Result 301, Processing Time 0.019 seconds

Effects of Agricultural Reservoir Rehabilitation on their Flood Control Capacities (농업용 저수지 둑 높이기에 따른 홍수조절효과 분석)

  • Jun, Sang Min;Kang, Moon Seong;Song, Inhong;Hwang, Soon Ho;Kim, Kyeung;Park, Jihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.57-68
    • /
    • 2013
  • About 74 % of reservoirs in Korea are older than 40 years and their storage capacities have been decreased substantially. As part of reservoir reinforcement, the dam heightening project has been ongoing for about 110 reservoirs. The main purpose of the dam heightening project is to secure additional environmental water, while improving flood control capacity by gaining additional storage volume. The objective of this study was to evaluate reservoir flood control capacity changes of dam heightening reservoirs for effective management of additional storage volume. In this study, 13 reservoirs were selected for reservoir simulation of 200 year return period floods. Rainfall data of 1981-2100 were collected and divided into 4 periods (1981-2010; 1995s, 2011-2040; 2025s, 2041-2070; 2055s, 2071-2100; 2085s). Probability rainfalls and 200yr design floods of each period were calculated using FARD2006 and HEC-HMS. Design floods were used as inputs of each reservoir simulation using HEC-5. Overall, future probability rainfalls and design floods tend to increase above the past 1995s. Control ratios were calculated to evaluate flood control capacities of reservoirs. As a result, average flood control ratios were increased from 32.6 % to 44.2 % after dam heightening. Control ratios were increased by 12.7 % (1995s), 12.4 % (2025s), 10.3 % (2055s) and 10.9 % (2085s). The result of this study can be used as a basis for establishing the reservoir management structure in the future.

Safety estimation of check dam in Muju region according to debris yield (토사유출에 따른 무주지역 사방댐의 안전성 평가)

  • Kwon, Hyuk Jae;Kim, Hyeong Gi
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.915-924
    • /
    • 2021
  • In this study, the probability of exceeding capacity for 4 check dams in Muju mountain region have been estimated. From the results, optimum design of check dam and safety according to wild fire have been discussed. Reliability model has been established by using MSDPM for calculating debris yield to estimate the probability of exceeding capacity of check dam. Probability of exceeding capacity for 4 check dams has been estimated according to maximum rainfall intensity of return periods (10year, 50year, 100year, and 200year). It was found that 1 check dam of Samga-ri basin and 1 check dam of Jeungsan-ri basin were designed by overestimation and 61% and 47% of capacity should be reduced, respectively. Furthermore, probability of exceeding capacity according to burned area has been estimated and compared. It was found that check dam of Sanga-ri basin is the weakest for the wild fire effect in this study area.

ILLUDAS-NPS Model for Runoff and Water Quality Analysis in Urban Drainage (도시유역의 유출·수질해석을 위한 ILLUDAS-NPS 모형)

  • Kim, Tae-Hwa;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.791-800
    • /
    • 2005
  • An ILLUDAS-NPS model was developed which is able to compute pollutant loadings and the concentrations of water quality constituents. This model is based on the existing ILLUDAS model, and added for use in the water quality analysis process during dry and rainy periods. For dry period, the specifications of coefficients for discharge and water quality were used. During rainfall, we used the daily pollutant accumulation method and the washoff equation for computing water quality each time. According to the results of verification, the ILLUDAS-NPS model provides generally similar outputs with the measured data on total loadings, peak concentration and time of peak concentration for three rainfall events in the Hong-je Basin. In comparison with the SWMM and STORM models, it was shown that there is little difference between ILLUDAS-NPS and SWMM.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.

Reduction of the Offensive Odor from Confectionery Wastewater Plant (제과공장의 폐수처리장에서 발생하는 악취 저감)

  • 김영식;손병현;조상원;정종현
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.62-69
    • /
    • 1998
  • It has been studied that the measurement of odor component emission at confectionery manufacture. The objects of this study were to investigate reduction of offensive odor. The survey effects of odorous materials are presented as follows. The countermeasure of operating process is to minimize sludge sediment in each unit facility. Especially, in summer, we have to clean the sludge frequently, because anaerobic decomposing is likely to occur easily. The sludge or scum from sedimentation tank pond, and floating tank should be treated quickly. We should avoid overloading operation. In the case of overloading, dissolved oxygen should be increased, the quality of wastewater input should be decreased. When dried cakes from condense tank or floating tank are left in treatment plant, we should cover, to prevent diffusion of smell with masking materials. The seasonal condition of operating should be fixed and the kind of coagulants should be changed because the wastewater in each season have different loading rates and organic materials. Odorous materials are very sensitive to the seasonal temperature variation. Especially, when the amount of rainfall is small and the high temperature of maintenance in long periods, air diffusion rate is large, so odorous materials can make great effect on surroundings comparision with other periods. To reduce odorous gas, as short term method, we had better take ceramic addition method. Especially, in summer we should take ceramic addition method. Also, as long term method, the size of wastewater treatment facility is the most important in the normal operating of wastewater treatment facility. But wastewater treatment facilities in this factory are too old, treatment process is old fashion, and the size is too small. So, large wastewater quantity to treat in summer. As results, the expansion of wastewater treatment facility and the process of improvement are required. Restriction level of odor was exceed. As it is overloaded in summer, the basis cause of odor is that the size of wastewater treatment facility is small. The prediction of air quality equilibrium density variation show that the odorous materials from working place are Amine materials whose smell strength is about 2.5(a little strong degree). We can suppose that in summer is sensitive to temperature variation, smell strength is larger as to reduce the origin of odor. We must expand wastewater treatment facility and improve the process A.S.A.P.

  • PDF

Influence of Waterlogging Period on the Growth, Physiological Responses, and Yield of Kimchi Cabbage (침수기간이 배추의 생육, 생리적 반응 및 수량에 미치는 영향)

  • Lee, Sang Gyu;Lee, Hee Ju;Kim, Sung Kyeom;Choi, Chang Sun;Park, Sung Tae
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.535-542
    • /
    • 2016
  • This study was conducted to investigate effects of waterlogging on the growth, physiological responses, and yield of Kimchi cabbage. The growth of Kimchi cabbage with applied optimized air temperature (set to $20^{\circ}C$) was greater than those with high air temperature (set to $30^{\circ}C$) and the growth significantly decreased by severe waterlogging treatment. The net photosynthetic rate of outer leaves on one hour after waterlogging treatment was higher at 72 hours waterlogging treatment in $20^{\circ}C$ and lower at 24 hours of waterlogging treatment in $30^{\circ}C$. The root activity was decreased by the elevation of waterlogging periods in $20^{\circ}C$ treatment and lower by the short of waterlogging periods in $30^{\circ}C$ treatment. The ratio of formality with non-waterlogging treatment was approximately 64% under $20^{\circ}C$ air temperature and that of range was from 16 to 30% under $30^{\circ}C$. The yield under $20^{\circ}C$ showed higher than that under high air temperature. The non-waterlogging treatment in $20^{\circ}C$ had 4,463 kg/10a, which was the greatest among all treatments, while yields of non-waterlogging treatment at $30^{\circ}C$ were significantly low as 1,082 kg/10a. Results suggested that additional drainage work should be needed to overcome waterlogged conditions of open field during heavy rainfall and should be drainage as soon as possible if there are waterlogging.

Analysis of Nutrient Dynamics and Development of Model for Estimating Nutrient Loading from Paddy Field

  • Jeon, Ji-Hong;Yoon, Chun-G.;Hwang, Ha-Sun;Jung, Kwang-Wook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.57-69
    • /
    • 2003
  • To evaluate nutrient dynamics with different fertilization in paddy field and develop water quality model, mass balance analysis was performed during growing season of 2001-2002 in field experimental plots irrigated with groundwater. As a result of water balance analysis, most of outflow was surface drainage as about half of total outflow and about 500mm was lost by evapotranspiration. The water budget was well balanced. The runoff from paddy field was influenced by rainfall and forced drain. Especially runoff during early cultural periods more depends on the forced drain. As a result of mass balance analysis, most of nutrient was input by fertilization and lost by plant uptake. Significant amount of nitrogen were supplied by precipitation and input from upper paddy field, comprising 12%∼28% of total inflow. Nutrient loading by surface drainage was occurred showing about 15%∼29% for T-N and 6%∼13% for T-P. The response of rice yield with different fertilization was not significant in this study. Water quality model for paddy field developed using Dirac delta function and continuous source was calibrated and validated to surface water quality monitoring data. It demonstrates good agreement between observed and simulated. The nutrient concentration of surface water at paddy field was significantly influenced by fertilization. During early cultural periods when significant amount of fertilizer was applied, surface drainage from paddy field can cause serious water quality problem. Therefore, reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Shallow irrigation, raising the weir height in diked rice fields, and minimizing forced surface drainage are suggested to reduce surface drainage outflow.

Prediction of Stream Flow on Probability Distributed Model using Multi-objective Function (다목적함수를 이용한 PDM 모형의 유량 분석)

  • Ahn, Sang-Eok;Lee, Hyo-Sang;Jeon, Min-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.93-102
    • /
    • 2009
  • A prediction of streamflow based on multi-objective function is presented to check the performance of Probability Distributed Model(PDM) in Miho stream basin, Chungcheongbuk-do, Korea. PDM is a lumped conceptual rainfall runoff model which has been widely used for flood prevention activities in UK Environmental Agency. The Monte Carlo Analysis Toolkit(MCAT) is a numerical analysis tools based on population sampling, which allows evaluation of performance, identifiability, regional sensitivity and etc. PDM is calibrated for five model parameters by using MCAT. The results show that the performance of model parameters(cmax and k(q)) indicates high identifiability and the others obtain equifinality. In addition, the multi-objective function is applied to PDM for seeking suitable model parameters. The solution of the multi-objective function consists of the Pareto solution accounting to various trade-offs between the different objective functions considering properties of hydrograph. The result indicated the performance of model and simulated hydrograph are acceptable in terms on Nash Sutcliffe Effciency*(=0.035), FSB(=0.161), and FDBH(=0.809) to calibration periods, validation periods as well.

Evaluation of Major Storm Events Both Measured by Chukwooki and Recorded in Annals of Chosun Dynasty: 2. Quantitative Approach (조선왕조실록 및 측우기 기록에 나타난 주요호우사상의 평가: 2. 정량적 평가)

  • Kim, Dae-Ha;Yoo, Chul-Sang;Kim, Hyeon-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.545-554
    • /
    • 2007
  • This study characterized the storm events recorded in the Annals of Chosun Dynasty and evaluated them using a simple rectangular pulses Poisson process model. Storm events without in detail explanation like Keun-Bi (big rain) were found to have rather short return periods compared to the storm events with lengthy explanation about damages like Keun-Mul (high water), Hong-Soo (flood), and Pok-Woo (torrential rain). Not all storm events recorded were the size of annual maxima, so their return periods were found not to be higher than a certain level. Another noticeable fact is that these storm events recorded seem more sensitive to the storm duration rather than the storm intensity. That is, most storms recorded seem to be focused on long durations rather than high intensities. Those storm events with long durations must have caused serious flood damages, which maybe the critical reason why they were recorded.

Proposal and Application of Water Deficit-Duration-Frequency Curve using Threshold Level Method (임계수준 방법을 이용한 물 부족량-지속기간-빈도 곡선의 제안 및 적용)

  • Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.997-1005
    • /
    • 2014
  • This study evaluated hydrological drought the using the annual minimum flow and the annual maximum deficit method and proposed the new concept of water deficit-duration-frequency curves similar to rainfall intensity-duration-frequency curves. The analysis results of the annual minimum flow, the return periods of hydrological drought in the most duration of 1989 and 1996yr were the longest. The analysis results of the annual maximum deficit, the return periods of 60-days and 90-day deficit which are relatively short duration were the longest in 1995yr, about 35-year, Hydrological drought lasted longer was in 1995, the return period was about 20-year. Though duration as well as magnitude is a key variable in drought analysis, it was found that the method using the annual minimum flow duration not distinguish duration.