• Title/Summary/Keyword: Periodontal ligament (PDL)

Search Result 105, Processing Time 0.021 seconds

A Study on the Expression of Glycosaminoglycans in the Experimental Tooth Movement of Rat and in Cultured Periodontal Ligament Cells (실험적 치아이동시 glycosaminoglycan의 발현에 관한 연구)

  • Lee, Kyung-Hwan;Lee, Jong-Jin;Kang, Kyung-hwa;Kim, Eun-Cheol;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.31 no.4 s.87
    • /
    • pp.447-458
    • /
    • 2001
  • The purpose of this study was to evaluate 1) in vivo, the expression of chondroitin 4-sulfate (CH-4S), a structural element of glycosaminoglycans(GAGs), in periodontal tissue during the experimental movement of rat incisors, by labelled streptavidine biotin immunohistochemical staining for CH-4S, 2) In vitro, the expression of CH-4S in cultured human periodontal ligament(PDL) cells supplemented with 10ng/ml of $TGF-{\beta}_1$, 20ng/ml of PDGF-BB, 1ng/ml $TNF-\alpha$, or $1{\mu}g/ml$ LPS by western blot analysis. The results of this study were as follows ; 1. The expression of CH-4S was stronger in pulp, PDL, osteoblasts, osteoclasts and osteocytes in experimental group than in control group, but was rare in dentin, and cementum of experimental groups, regardless of the duration of force application, which was not different from that of control group. 2. In experimental group, the expression of CH-4S in pulp began to increase at 1 day after force application and got to the highest degree at 7 days. After 14 days, the expression in CH-4S immunoreactivity was decreased, and became similar to that of control group at 28 days. 3. The expression of CH-4S in PDL was noted in adjacent to alveolar bone. PDL showed higher intensity of immunolabelling after 1 day of orthodontic tooth movement. And the expression was more stronger in the tension side than that of pressure side of PDL at 1 day, but more stronger in the pressure side than that of tension side of PDL at 4 days. After 7 days, a decrease in CH-4S expression was observed. 4. The expression of CH-4S in alveolar bone got to the highest degree at 4 days, and At 7 days, a decrease in CH-4S expression was observed. 5. PDGF-BB notably raised the expression of CH-4S in the PDL cells at 3 days of cultivation 6. The expression of CH-4S of PDL cells was decreased with the application of $TNF-\alpha$ at 1 day. 7. Admixture of $TGF-{\beta}_1$ and PDGF-BB got more expression of CH-4S in PDL as compared to only $TGF-{\beta}1$ or PDGF-BB. A similar decrease of the expression of CH-4S was observed in the case of application of LPS or $TNF-\alpha$.

  • PDF

THE EFFECT OF NATURAL EXTRACTS ON CELL GROWTH AND CYTOKINE PRODUCTION (생약 추출물이 세포성장 및 cytokine 생산에 미치는 영향)

  • Ryu, In-Cheol;Son, Seong-Heui;Chung, Chong-Pyoung;Bae, Ki-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.37-47
    • /
    • 1993
  • The native connective tissue attachment of the periodontium is known to be a complex consisting of gingival fibroblasts, periodontal ligament cells, gingival epithelial cells, cementum, alveolar bone and extensive extracellular matrix (collagen, glycoprotein and proteoglycans). The purpose of this study was to evaluate the effects of natural extracts on DNA, collagen and protein synthesis and inhibition of cytokine production in the gingival and periodontal ligament fibroblasts and gingival epithelial cells. Healthy gingival tissue was obtained from orthodontic treatment patients, and gingival epithelial cells, gingival fibroblasts and periodontal ligament cells were isolated and cultured from the samples. After treated with Ginseng protein, Pluronic F-68, Scutellariae Radix, centella asiatica, PDGF, IGF, DNA synthesis, total protein and collagen synthesis, and cytokine production of gingival epithelial cell, gingival fibroblast and periodontal ligamentcells were measured. MTT method for DNA synthesis, Peterkofsky and Dingerman method for total protein and collagen synthesis, and IL-1 ELISA kit for cytokine production were used. The proliferation of epithelial cells was enhanced in Centella asiatica, Ginseng protein, Pluronic F-68 and Scutellariae Radix. The activities of PDL cells were increased in PDGF, IGF, and Pluronic F-68. Higher collagen synthesis was observed in Scutellariae Radix and total protein synthesis was increased in Scutellariae Radix and PDGF. The inhibitory effects on IL-1, IL-6, $TNF-{\alpha}$ were observed in all exrracts.

  • PDF

Static tensional forces increase osteogenic gene expression in three-dimensional periodontal ligament cell culture

  • Ku, Seung-Jun;Chang, Young-Il;Chae, Chang-Hoon;Kim, Seong-Gon;Park, Young-Wook;Jung, Youn-Kwan;Choi, Je-Yong
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.427-432
    • /
    • 2009
  • Orthodontic tooth movement results from the combinational process of both bone resorption and formation in the compressive and tension sides, respectively. However, the genes responsible for new bone formation in tension sides have not been determined. In this study, we used DNA microarray and real-time RT-PCR to identify genes in human periodontal ligament (PDL) cells that undergo significant changes in expression in response to static tensional forces (2 or 12 hours). The genes found were alkaline phospatase (ALP), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), and several collagen genes. Furthermore, an ELISA evaluating the expression of VEGF, type IV collagen and MMP-2 found levels significantly increased after 24 and 72 hours (P < 0.05). ALP activity was also increased after 24 hours (P < 0.05). Collectively, we found the genes up-regulated in our study by the static tensional force are related to osteogenic processes such as matrix synthesis and angiogenesis.

Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts

  • Akbulut, Makbule Bilge;Arpaci, Pembegul Uyar;Eldeniz, Ayce Unverdi
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.24.1-24.12
    • /
    • 2018
  • Objectives: The aim of this in vitro study was to evaluate the biocompatibility of newly proposed root-end filling materials, Biodentine, Micro-Mega mineral trioxide aggregate (MM-MTA), polymethylmethacrylate (PMMA) bone cement, and Smart Dentin Replacement (SDR), in comparison with contemporary root-end filling materials, intermediate restorative material (IRM), Dyract compomer, ProRoot MTA (PMTA), and Vitrebond, using human periodontal ligament (hPDL) fibroblasts. Materials and Methods: Ten discs from each material were fabricated in sterile Teflon molds and 24-hour eluates were obtained from each root-end filling material in cell culture media after 1- or 3-day setting. hPDL fibroblasts were plated at a density of $5{\times}10^3/well$, and were incubated for 24 hours with 1:1, 1:2, 1:4, and 1:8 dilutions of eluates. Cell viability was evaluated by XTT assay. Data was statistically analysed. Apoptotic/necrotic activity of PDL cells exposed to material eluates was established by flow cytometry. Results: The Vitrebond and IRM were significantly more cytotoxic than the other root-end filling materials (p < 0.05). Those cells exposed to the Biodentine and Dyract compomer eluates showed the highest survival rates (p < 0.05), while the PMTA, MM-MTA, SDR, and PMMA groups exhibited similar cell viabilities. Three-day samples were more cytotoxic than 1-day samples (p < 0.05). Eluates from the cements at 1:1 dilution were significantly more cytotoxic (p < 0.05). Vitrebond induced cell necrosis as indicated by flow cytometry. Conclusions: This in vitro study demonstrated that Biodentine and Compomer were more biocompatible than the other root-end filling materials. Vitrebond eluate caused necrotic cell death.

Effect of estrogen on growth hormone receptor expression of human periodontal ligament cell line (치주인대세포 배양에서 estrogen이 growth hormone receptor의 발현유도에 미치는 영향)

  • Hong, Sung-Gyu;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.441-452
    • /
    • 2000
  • The present studies were performed to investigate the interaction of $17{\beta}$-estradiol and human growth hormone(hGH) on the proliferation of human periodontal ligament(WDL) cell. The independent effects of $17{\beta}$ estradiol and hGH on hPDL cell proliferation were investigated and the effects of hGH on hPDL cell proliferation after $17{\beta}$-estradiol pre-treatment were also investigated. Lastly, the change of hGH receptor expression in hPDL cell after $17{\beta}$-estradiol pre-treatment were investigated. The obtained results were as follows; 1. The treatment of $17{\beta}$-estradiol or hGH had no significant effects on hPDL cell proliferation. 2. After pre-treatment of $17{\beta}$-estradiol, hGH stimulated the proliferation of the hPDL cell, regardless of hHG concentration. 3. Although there was not hGH receptor in the hPDL cell, hGH receptors were expressed in hPDL cell after more than 6 hours pre-treatment of $17{\beta}$-estradiol. 4. The effect of hGH on hPDL cell proliferation was related to the hGH receptor expression. $17{\beta}$-estradiol pre-treaaent contributed to the hGH effects on the hPDL cell by stimulating hGHR expression.

  • PDF

EFFECT OF VARIOUS CYTOKINES ON THE PRODUCTION OF PROSTAGLANDIN $E_2$, LEUKOTRIENE $B_4$ AND COLLAGENASE IN HUMAN PERIODONTAL LIGAMENT FIBROBLASTS IN VITRO (수종의 cytokine이 사람 치주인대 섬유아세포의 prostaglandine $E_2$, leukotriene $B_4$ 및 collagenase 생산에 미치는 영향)

  • Kim, Jung-Ho;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.871-883
    • /
    • 1994
  • This experiment was designed to study possible roles of $interleukin-1\beta$, interleukin-6 and tumor necrosis $factor-\alpha$ in bone remodeling by measuring their effects on $PGE_2,\; LTB_4$ and collagenase production when they were administered to human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were collected from first premolars extracted for orthodontic treatment. They were incubated in the environment of $37^{\circ}C,\;5\%\;Co^2,\;and\;100\%$ humidity. They were treated with $0.25\%$ trypsin-EDTA solution and centrifuged. PDL cells in the fifth to seventh passage were used for the experiment. Cells were seeded onto the culture dishes and when they were successfully attached, human recombinant $interleukin-1\beta$, interleukin-6, and tumor necrosis $factor-\alpha$ were administered, alone or in combination. They were incubated for 4, 8 and 24 hours and the levels of $PGE_2,\;LTB_4$ and collagenase released into the culture media were assessed by enzymeimmunoassay and collagenase activity assay. The conclusions are as follows: 1. $IL-1\beta\;and\;TNF-\alpha$ were very active in stimulating the production of $PGE_2$ and collagenase by human periodontal ligament fibroblasts, while IL-6 increased $LTB_4$ production. 2. $IL-1\beta$ significantly increased $PGE_2$, but $LTB_4$ Production was not increased. $IL-1\beta$ is thought to act mainly via the cyclooxygenase pathway of arachidonic acid metabolism. 3. IL-6 tended to inhibit $IL-1\beta$ in the production of $PGE_2$ and collagense whereas IL-6 and $TNF-\alpha$ showed auditive effect in the level of $PGE_2$. The above cytokines increased the release of at least one of $PGE_2,\;LTB_4$ and collagenase. It suggests that cytokines are involved in bone remodeling process by stimulating PDL fibroblasts to produce various bone-resorptive agents. The roles of cytokines in bone remodeling as a whole would need further study.

  • PDF

Expression of PDL-specific protein;PDLs22 on the developing mouse tooth and periodontium (발생중인 생쥐 치아 및 치주조직에서 치주인대-특이 단백질; PDLs22의 발현)

  • Park, Jung-Won;Park, Byung-Ki;Kim, Sang-Mok;Kim, Byung-Ock;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • The periodontal ligament(PDL) is a unique tissue that is crucial for tooth function. However, little is known of the molecular mechanisms controlling PDL function. PDL-specific protein;PDLs22 had been previously identified as a novel protein isolated from cultured human PDL fibroblasts using subtraction hybridization between human gingival fibroblasts and PDL fibroblasts. The aim of this study was to examine the expression pattern and tissue localization of PDLs22 protein in embryonic and various postnatal stages of developing mouse using immunohistochemical staining. Embryos (E18) and postnatal (P1, P4, P5, P15, P18) were decapitated and the heads were fixed overnight in a freshly prepared solution of 4% paraformaldehyde. Some specimens were decalcified for $2{\sim}4$ weeks in a solution containing 10% of the disodium salt of ethylenediamine-tetraacetic acid (EDTA). Next, tissues were dehydrated, embedded in paraffin and sectioned serially at $6{\mu}m$ in thickness. Polyclonal antiserum raised against PDLs22 peptides, ISNKYLVKRQSRD, were made. The localization of PDLs22 in tissues was detected by polyclonal antibody against PDLs22 by means of immunohistochemical staining. The results were as follows; 1. Expression of PDLs22 protein was not detected in the tooth germ of bud and cap stage. 2. At the late bell stage and root formation stage, strong expression of PDLs22 protein was observed in developing tooth follicle, osteoblast-like cells, and subodontoblastic cells in the tooth pulp, but not in gingival fibroblasts, ameloblasts and odontoblasts of tooth germ 3. In erupted tooth, PDLs22 protein was intensely expressed in PDL and osteoblast-like cells of alveolar bone, but not in gingival fibroblasts, mature osteocytes and adjacent salivary glands. 4. In the developing alveolar bone and mid-palatal suture, expression of PDLs22 protein was seen in undifferentiated mesenchymal cells and osteoblast-like cells of developing mid-palatal suture, but not in mature osteocytes and chondrocytes. These results suggest that PDLs22 protein may play an important role in the differentiation of undifferentiated mesenchymal cells in the bone marrow and PDL cells, which can differentiate into multiple cell types including osteoblasts, cementoblasts, and PDL fibroblasts. However, more researches should be performed to gain a better understanding of the exact function of PDLs22 protein which related to the PDL cell differentiation.

The Effects of PDGF and LPS on the Viability of Human Periodontal Ligament Cells (PDGF와 LPS가 치주 인대 세포의 활성에 미치는 영향에 관한 연구)

  • Heo, Jeong;Lim, Jeong-Hyun;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.143-153
    • /
    • 1998
  • Platelet-derived growth factor(PDGF) and lipopolysaccharide(LPS) may be the important regualtors of bone metabolism Exogenous PDGF is recognized to have a stimulating effect on bone resorption in organ culture but to stimulate the formation of new bone ultimately. LPS is known to be a stimulating agent on the osteoclastic activity. The purpose of this study was to evaluate the effects and the interaction of PDGF and LPS on periodontal ligament(PDL) cells which have important roles in bone remodeling. Cultured human periodontal ligament cells were tented with various concentration or PDGF and/or LPS. The cellular viability was measured by Microtitration(MTT) assay according to the lapse time of culture. The obtained results were as follows: 1. The viability of PDL cells was not different from the con01 in 0.1ng/ml of PDGF, but was significantly increased to be over the level of control in 1ng/ml of PDGF at the second day of culture, and in 10ng/m1 of PDGF at the second and the third day of culture. 2. The cellular viability was decreased in $0.5{\mu}g/ml$ or $5{\mu}g/ml$ LPS at the third day of culture. 3. Incubation with both 1ng/ml or 10ng/ml of PDGF and $0.5{\mu}g/ml$ of $5{\mu}g/ml$ of LPS resulted in the increased cellular viability at the third day, which was greater than LPS only treated group. It was greater than even the control group in 10ng/m1 of PDGF. From the above findings, we could summarize that the admixture of PDGF and LPS could not less increase the viability of the human periodontal ligament cells than PDGF only.

  • PDF

Expression of Heat Shock Protein in Cytokine Stimulated PDL Cells and Inflamed Gingival Tissue (염증성 치은조직과 치주인대세포에서 Cytokine에 의해 유도되는 열충격단백 발현에 관한 연구)

  • Cho, In-Ho;Kim, Doek-Kyu;Kim, Eun-Cheol;You, Hyung-Keun;Shink, Hyung-Shin
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.103-120
    • /
    • 1998
  • Prokaryotic and eukaryotic cells respond to heat stress and other environmental abuses by synthesizing a small set of stress proteins and by inhibiting post-transcription synthesis of normal proteins. The purpose of the present study was to document the stress response produced by inflamed gingival tissue in vivo, and cytokine inducted human periodontal ligament cells. Human PDL cells were exposed to TNF-$\alpha$(1ng/ml), INF-$\gamma$(200 U/ml), LPS(100ug/ml), combination of cytokine, and SDS-PAGE gels running and Western blotting analysis was done. In vivo studies, the healthy gingival tissusse of a control group and inflamed gingival tissue of adult periodontitis were studied by immunohistochemistry and histology. The results were as follows 1. HSP 47 was distributed on basal layer in healthy gingiva, but stronger stained in basal, suprabasal, and spinous layer of inflamed gingiva. 2. HSP 47 was rare on endothelial cells and mononuclear cells in healthy gingiva, but stronger expressed in inflamed gingiva. 3. HSP 70 expression was rare on epihelium and inflammatory cells hi both healthy & inflamed gingiva. 4. HSP 70 was actively expressed on endothelial cells and inflammatory cells of capillary lumen in moderately & mild inflamend gingiva. 5. PDL cells showed low level of HSP 47 protein expression which was significantly induced by cytokine stimulation (LSP only and combination). 6. Maximum HSP 70 protein induction was seen with stimulation by a combination of the cytokine, Combination of TNF-$\alpha$, INF-$\gamma$, LPS have been shown to synergistically effects of HSP 70 expression. On the above findings, HSP Is influenced by cytokine and chronic inflammation in vivo, and may be involved in protection of tissue during periodontal inflammatiom.

  • PDF

THE EFFECT OF PARATHYROID HORMONE ON CYCLIC AMP LEVEL AND DISTRIBUTION IN PERIODONTAL CELLS IN TENS10N SITES DURING ORTHODONTIC TREATMENT (교정적 치아이동시 부갑상선홀몬이 긴장측 치주세포의 cAMP농도에 미치는 영향)

  • Davidovitch, Zeev;Lee, Ki-Soo;Zwilling, Bruce S.;Lanese, Richard R.;Schanfeld, Joseph L.
    • The korean journal of orthodontics
    • /
    • v.16 no.1
    • /
    • pp.51-70
    • /
    • 1986
  • Parathyroid hormone (PTH) is known to exert its effects on bone cells through the mediation of adenosine 3', 5'-monophosphate (cAMP). Orthodontic forces have also been shown to alter the cAMP content of paradental cells, particularly the alveolar bone osteoblasts. The objective of this experiment was to determine whether a combined orthodontic treatment-PTH administration regimen would have an additive effect on cAMP content in paradental cells in sites of periodontal ligament (PDL) tension. Seven groups of 4 one year old female cats each were treated for 1,3,6,12,24 h, 7 and 14 d by tipping one maxillary canine. PTH was administered twice daily, 30u/kg. Maxillary horizontal sections were stained immunohistochemically for cAMP and the degree of cellular staining intensity was determined microphotometrically as per cent light transmittance at 600nm. Alveolar bone osteoblasts, progenitor cells, PDL fibroblasts and cementoblasts in tenion sites were measured and the data were analyzed statistically by a mixed model analysis of variance. PTH administration increased the cAMP staining of nonorthodontically treated paradental cells in comparison to cells untreated by force or hormone. Cells in PDL tension sites of PTH-treated cats demonstrated significantly darker cAMP staining than cells in non-orthodontically-treated sites. Osteoblasts demonstrated the greatest response in terms of cAMP elevation, while in PDL fibroblasts orthodontic force did not increase cAMP levels above those measured in non-stretched hormonally-treated cells. These results demonstrate that PTH increases cAMP levels in paradental cells, particullarly in osteoblasts, and that the effects of PTH and orthodontic forces on paradental target cells may approach additivity.

  • PDF