• Title/Summary/Keyword: Periodontal disease activity

Search Result 122, Processing Time 0.019 seconds

Effect of Maintained Microorganisms against to The Phytoncide on Pr. intermedia (피톤치드 처리 후의 잔존 구강 세균이 Pr. intermedia에 미치는 영향)

  • Park, Jae-Bong;Auh, Q-Schick;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.2
    • /
    • pp.153-167
    • /
    • 2009
  • The present study was performed to observe the effect of phytoncide on oral normal microflora and the inhibitory effect of the surviving resident oral bacteria on Pr. intermedia. In this study, saliva from each of 20 healthy subjects was treated with 1% phytoncide from Japanese Hinoki (Chamaecyparis obtusa Sieb. et Zucc.). Surviving salivary bacteria were isolated on blood agar plates and identified by 16S rDNA sequencing. In order to select inhibitory isolates against Pr. intermedia, the isolates from the phytoncide-treated saliva were cultured with Pr. intermedia. The results were as follows: 1. Among the 200 surviving resident oral bacterium, 148(74.0%) bacterium inhibit the growth of Pr. intermedia on blood agar plates. 2. The 200 surviving resident oral bacterium were 109 Streptococcus salivarius(54.5%), 25 Streptococcus sanguinis(12.5%), 15 Streptococcus mitis(7.5%). 3. Among the 148 bacteria which inhibit Pr. intermedia, Streptococcus salivarius was 85.3%(93/109), Streptococcus sanguinis was 64.0%.(16/25), Streptococcus mitis was 54.3%(8/15), Streptococcus parasanguinis was 66.7%(6/9), and Streptococcus Alactolyticus was 100%(8/8). Taken together, among the surviving resident oral bacterium, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus mitis were mainly observed to inhibit Pr. intermedia. and they may exert an additional inhibitory activity against the periodontopathic bacterium. Therefore, phytoncide can be used for preventing and ceasing the progress of periodontal disease and halitosis, and thus is expect to promote oral health.

Antibacterial and Growth Inhibitory Effects of Liriope Platyphylla Ethanol Extract on Streptococcus Mutnas and Porphyromonas Gingivalis (맥문동 에탄올 추출물(Liriope platyphylla ethanol extract)의 Streptococcus mutnas와 Porphyromonas gingivalis에 대한 항균력과 성장억제 효과)

  • Su-Hyeon Chun;Ju-Yeon Park;Hyeon-Ji Lee;Ji-Eun Jeong;Eun-Suk Cha;Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.125-133
    • /
    • 2023
  • Purpose : This study aimed to analyze the antibacterial activity of Liriope platyphylla ethanol extract (LPEE) against Streptococcus mutans and Porphyromonas gingivalis and to validate its potential for the prevention and treatment of dental caries, gingivitis, and periodontal disease. Methods : To verify the antibacterial effect of L. pulsatilla ethanolic extract (LPEE) against S. mutans and P. gingivalis, the disk diffusion method was used to determine the inhibition zones at concentrations of 50, 100, 200, and 300 mg/㎖. To determine the minimum inhibition concentration (MIC), the final dose of LPEE was .2, .4, .8, 1.6, 2.5, and 5.0 mg/㎖, and the minimum bactericidal concentration (MBC) was determined based on the MIC results. To confirm the growth inhibitory effect of LPEE on both pathogens, the absorbance was measured at 600 nm after each incubation for 0, 3, 6, 12, and 24 hr at concentrations of .8, 1.6, 2.5, and 5.0 mg/㎖. Results : The cytotoxicity of LPEE was evaluated and the cell viability was more than 70 % at 400 mg/㎖. Therefore, concentrations of 50, 100, 200, and 300 mg/㎖ were used in this study. The antimicrobial effect against S. mutans was seen at 100 mg/㎖ and grew in a concentration-dependent manner, while P. gingivalis was effective at 50 mg/㎖ with the dose dependency. The MIC was .8 mg/㎖ for both strains, and the MBC was 1.6 mg/㎖ with the same results. The growth inhibitory effect of LPEE on S. mutans and P. gingivalis was observed, even at low concentrations. Conclusion : The antibacterial effect of LPEE was evaluated through the analysis of MIC, MBC, and growth inhibition effect on S. mutans and P. gingivalis, which suggests LPEE might have the possibility of utilization as a preventive and therapeutic composition for oral diseases.