• 제목/요약/키워드: Periodontal Ligament

검색결과 512건 처리시간 0.032초

백서 치주인대세포의 분화에 대한 Bone morphogenetic protein-7의 영향 (Effect of BMP-7 on osteoblastic differentiation of rat periodontal ligament cells)

  • 이호재;김영준;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제35권3호
    • /
    • pp.747-760
    • /
    • 2005
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease. however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. Recombinant human bone morphogenetic protein-7(rhBMP-7) can differentiate the osteoprogenitor cells and induce bone formation. The purpose of this study was to evaluate the effect of BMP-7 on rat periodontal ligament cells differentiation, in vitro. In the control group, cells was cultured with DMEM media. In the experimental groups, cells were cultured with rhBMP-7 in concentration of 10, 25, 50 and 100 ng/ml. Each group was characterized by examining alkaline phosphatase activity at 3 and 5 days of culture and the ability to produce mineralized nodules of rat calvarial cells at 14 days of culture. Synthesis of type I collagen(COL-I), osteocalcin(OCN), and bone sialoprotein(BSP) was evaluated by RT-PCR at 7 days of culture. Activation of Smad proteins and p38 MAP kinase was determined by western blot analysis of the cell lysates. Alkaline phosphatase activity was significantly increased in the concentration of BMP-7 50 ng/ml and 100 ng/ml compared to the control(p<0.05). The mineralized bone nodule formation was greater with addition of 50 ng/ml and 100 ng/ml BMP-7 than the control(p<0.01). In 7 days' culture, the expressions of COL-I, BSP, and OCN was increased by BMP-7 in concentration of 10 $ng/ml{\sim}100$ ng/ml. In western blot analysis, BMP-7 treated culture cells expressed Smad 1,5,8 in dose-dependent manner, whereas BMP-7 did not activate phosphorylated form of p38 MAP kinase. These result suggested that BMP-7 stimulate rat periodontal ligament cells to differentiate toward osteoblast phenotype and increase bone matrix production by activation of BMP-Smad pathway.

키토산이 치주인대 섬유아세포에 미치는 영향 (The effects of chitosan on the human periodontal ligament fibroblasts in vitro)

  • 백정원;이현정;유윤정;조규성;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.823-832
    • /
    • 2001
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease, however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. The effect of chitosan(poly-N-acetyl glucosaminoglycan), a carbohydrate biopolymer extracted from chitin, on periodontal ligament regeneration is of particular interest. The purpose of this study was to evaluate the effect of chitosan on the human periodontal ligament fibroblasts(hPDLFs) in vitro, with special focus on their proliferative properties by M'IT assay, the synthesis of type I collagen by reverse transcription-polymerase chain reaction(RT-PCR) and the activity of alkaline phosphatase(ALP). Fibroblast populations were obtained from individuals with a healthy periodontium and cultured with ${\alpha}MEM$ as the control group. The experimental groups were cultured with chitosan in concentration of 0.01,0.1, 1,2mg/ml. The results are as follows; 1. Chitosan-induced proliferative responses of hPDLFs reached a plateau at the concentration of O.lmg/ml(p<0.05). 2. When hPDLFs were stimulated with 0.lmg/ml chitosan, mRNA expression of type I collagen was up-regulated. 3. When hPDLFs were stimulated with 0.lmg/ml chitosan, ALP activity was significantly up-regulated(p<0.05). In summary, chitosan(0.lmg/ml) enhanced the type I collagen synthesis in the early stage, and afterwards, facilitated differentiation into osteogenic cells. The results of this in vitro experiment suggest that chitosan potentiates the differentiation of osteoprogenitor cells and may facilitate the formation of bone.

  • PDF

Chitosan이 치주인대, 두개관 및 치은섬유아세포의 성상에 미치는 영향 (Effects of chitosan on the characteristics of periodontal ligament, calvaria cells and gingival fibroblasts)

  • 김선희;권영혁;이만섭;박준봉;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제28권1호
    • /
    • pp.17-35
    • /
    • 1998
  • Chitosan, with a chemical structure similar to hyaluronic acid, has been implicated as a wound healing agent. The purpose of this research was to evaluate the effects of chitosan on the characteristics of periodontal ligament cells, calvaria cells and gingival fibroblasts and to define the effects of chitosan on bone formation in vitro. In control group, the cells were cultured alone with Dulbecco's Modified Eagle's Medium contained with 10% Fetal bovine serum, 100unit/ml penicillin, $100{\mu}g/ml$ streptomycin, $0.5{\mu}g/ml$ amphotericin-B. In experimental group, chitosan($40{\mu}g/ml$) is added into the above culture condition. And then each group was characterized by examining the cell proliferation at 1,3,5,7,9,12,15 day, the amount of total protein synthesis, alkaline phosphatase activity at 3, 7 day and the ability to produce mineralized nodules of rat calvaria cell at 11 day. The results were as follows : 1. At early time both periodontal ligament cells and calvaria cells in chitosan-treated group proliferated more rapidly than in non-treated control group, but chitosan-treated group of periodontal ligament cells at 9 days and calvaria cells at 12days showed lower growth rate than control group. Gingival fibroblast in chitosan-treated group had lower growth rate than in control group but the difference was not statistically significant (P< 0.01).2. Both periodontal ligament cells and calvaria cells in chitosan-treated group showed much protein synthesis than in control group at 3 days, but showed fewer than in control group at 7 days. Amount of total protein synthesis of gingival fibroblast didn't have statistically significant difference among the two groups(P< 0.01). 3. At 3 and 7 days, alkaline phosphatase activity of periodontal ligament cells and calvaria cells was increased in chitosan-treated group, but at 7 days there was not statistically significant difference among the two groups of calvaria cells (P< 0.01). Alkaline phosphatase activity of gingival fibroblast didn't have statistically significant difference among the two groups(P<0.01). 4. Mineralized nodules in chitosan-treated group of rat calvaria cells were more than in control group. In summery, chitosan had an effect on the proliferation, protein systhesis, alkaline phosphatase activity of periodontal ligament cells and calvaria cells, and facilitated the formation of bone. It is thought that these effects can be used clinically in periodontal regeneration therapy.

  • PDF

Evaluation of the periodontal regenerative properties of patterned human periodontal ligament stem cell sheets

  • Kim, Joong-Hyun;Ko, Seok-Yeong;Lee, Justin Ho;Kim, Deok-Ho;Yun, Jeong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제47권6호
    • /
    • pp.402-415
    • /
    • 2017
  • Purpose: The aim of this study was to determine the effects of patterned human periodontal ligament stem cell (hPDLSC) sheets fabricated using a thermoresponsive substratum. Methods: In this study, we fabricated patterned hPDLSC sheets using nanotopographical cues to modulate the alignment of the cell sheet. Results: The hPDLSCs showed rapid monolayer formation on various surface pattern widths. Compared to cell sheets grown on flat surfaces, there were no significant differences in cell attachment and growth on the nanopatterned substratum. However, the patterned hPDLSC sheets showed higher periodontal ligamentogenesis-related gene expression in early stages than the unpatterned cell sheets. Conclusions: This experiment confirmed that patterned cell sheets provide flexibility in designing hPDLSC sheets, and that these stem cell sheets may be candidates for application in periodontal regenerative therapy.

백서 치주인대세포의 RANKL 발현에 대한 p38 MAPK의 역할 (RANKL expression is mediated by p38 MAPK in rat periodontal ligament cells)

  • 김종철;김영준;정현주;김옥수
    • Journal of Periodontal and Implant Science
    • /
    • 제34권3호
    • /
    • pp.489-498
    • /
    • 2004
  • Recent studies have demonstrated that human periodontal ligament cells express receptor activation of nuclear factor ${\kappa}B$ ligand (RANKL) which enhances the bone resorbing activity of osteoclasts differentiated from hematopoietic preosteoclasts. The purpose of this study is to determine the effects of p38 MAPK and JNK kinase upon regulating RANKL and OPG in response to $IL-1{\beta}$(l ng/ml) in rat periodontal ligament cells. Soluble RANKL was measured by immunoassay. The effects of p38 MAPK on RANKL and OPG expression was determined by RT-PCR. The results were as follows: 1. Periodontal ligament cells which stimulated by $IL-1{\beta}$ increased soluble RANKL synthesis by dose-dependent pattern. 2. p38 MAP kinase inhibitor (SB203580) showed regulation of soluble RANKL expression by dose-dependent manners. 3. p38 MAP kinase inhibitor (SB203580) regulated the expression of RANKL, but it dose regulate the expresseion of OPG. 4. JNK (c-jun $NH_2-terminal$ kinase) inhibitor (PD98059) did not regulate mRANKL and mOPG. These results suggested that p38 MAPK play a significant role in RANKL gene expression.

홍화씨 추출물이 치주인대세포와 조골유사세포의 골 광물화 작용에 미치는 효과 (Effect of Extract of Seeds of Carthamus tinctorius L. on Mineralization in Periodontal Ligament Cells and Osteoblastic Cells)

  • 강정구;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제28권3호
    • /
    • pp.475-489
    • /
    • 1998
  • The main goal for the treatment of periodontal diseases is the regeneration of lost cementum, bone and connective tissue. Clinical and histological research suggests that it is possible to restore periodontal structures. Seeds of Carthamus tinctorius L. has been used for the treatment of bone fracture and osteoporosis in traditional Korean medicine. The purpose of this study is to examine the effect of extract of seeds of Carthamus tinctorius L. on mineralization in periodontal ligament cells and osteoblastic cells. Periodontal ligament cells were primarily obtained from a extracted premolars with non-periodontal diseases, Osteoblastic cells were obtained from calvariae of a fetal rat, Cells were cultured with DMEM at $37^{\circ}C$ with 5% $CO_2$ in 100% humidity incubator. Alkaline phosphatase(ALP) level and the number of calcification nodules were examined and western blot analysis using osteonectin was performed, Measurements of ALP levels and calcification nodules showed that extract of seeds of Carthamus tinctorius L. had significantly higher activity than control in all of both cells. In western blot analysis, protein expression of osteonectin indicated that extract of seeds of Carthamus tinctorius L. showed an increased pattern than control in all of both cells. From the above results, it seems that extract of seeds of Carthamus tinctorius L. has excellent effect on mineralization in periodontal ligament cells and osteoblastic cells.

  • PDF

물리적 외력이 배양중인 치주인대세포에 미치는 영향 (THE EFFECTS OF MECHANICAL FORCE ON CULTURED PERIODONTAL LIGAMENT CELLS IN VITRO)

  • 김현영;차경석
    • 대한치과교정학회지
    • /
    • 제24권2호
    • /
    • pp.295-301
    • /
    • 1994
  • The movement of teeth during orthodontic treatment requires bone remodeling process in periodontal tissue. To find out the changes occuring in the cell itself, mechanical force was applied to the cultured periodontal ligament cells. Following results were obtained from measuring the changes in cyclic AMP and $PGE_2$, $^3H$-thymidine incorporation amount in time lapse after application of mechanical force. 1. When mechanical force was applied to cultured PDL cells, the amount of cAMP in cells were increased significantly after 15 min. of force application, but were decreased gradually as time lapsed. 2. When mechanical force was applied to cultured PDL cells, the amount of PGE2 were increased at 20,40,60 min. and was significantly increased at 20 min. 3. When mechanical force was applied to cultured PDL cells, the amount of $^3H$-thymidine incorporation was some increased, but was not statistically significant.

  • PDF

행인 추출물이 고포도당 상태의 치은섬유아세포 및 치주인대세포에 미치는 영향 (Effect of Armeniacae Semen Extracts on Human Gingival Fibroblasts and Periodontal Ligament Cells under the High Glucose Conditions)

  • 나성윤;권영혁;박준봉;허익;김성진
    • Journal of Periodontal and Implant Science
    • /
    • 제30권1호
    • /
    • pp.77-91
    • /
    • 2000
  • The purpose of this study was performed to evaluate the effect of Armeniacae Semen extracts on human gingival fibroblasts and periodontal ligament cells in vitro. A experiment was done to evaluate the effect of Armeniacae Semen extracts in high glucose media. $400mg/d{\ell}$ glucose was added to the culture media of all groups. In control group, the cells($4.5{\times}10^4cells/ml$) were cultured with Dulbecco's Modified Eagle's Medium contained with 10% fetal bovine serum. In experimental groups, Armeniacae Semen extracts was added to the above culture media at the final concentrations of $1{\mu}g/m{\ell}$(Test group 1) and $l0{\mu}g/m{\ell}$(Test group 2). Then each group was tested for the rate of cell proliferation at 1, 2, 5 days, protein levels at 2, 5 days, and alkaline phosphatase activity at 2, 5 days. The results were as follows ; 1. Under the high glucose condition 1)As centration of Armeniacae Semen extracts increased, the rate of cell proliferation decreased significantly in test group 2 at 5 days in human gingival fibroblasts, but increased significantly in test group 2 at 5 days in human periodontal ligament cells(P<0.05). 2)In human gingival fibroblasts, test group 2 showed significantly decreased protein levels as compared to control group at 5 days. In periodontal ligament cells, test group 1 and 2 showed not significantly increased protein levels as compared to control group at 2, 5 days(P<0.05). 3)Alkaline phosphatase activity of human periodontal ligament cells increased as concentration of Armeniacae Semen extracts increased. The test group 1and 2 showed significant increase as compared to control group at 5 days(P<0.05). From the above results, Armeniacae Semen extracts appeared to enhance cellular activities including the rate of cell proliferation, protein levels and alkaline phosphatase activity of selectively human periodontal ligament cells in high glucose media. This study suggests that Armeniacae Semen extracts seem to be able to subside the inflammation of periodontal tissue and regenerate the destructed periodontal tissue.

  • PDF

저농도의 ${\beta}-aminoproprionitrile$이 백서 치주조직에 미치는 영향 (The Effects of low concentrative ${\beta}-APN$ on periodontal tissue of Rat)

  • 이재목
    • Journal of Periodontal and Implant Science
    • /
    • 제26권4호
    • /
    • pp.859-872
    • /
    • 1996
  • The purpose of this study was to evaluate the effect of low concentrative ${\beta}-APN$ on the periodontal ligament and relationship between lathyrintic bodies and osteoclast cells near the by alveolar bone. Mandibles including teeth and periodontiums of 24 Sprague-Dawley rat was used. ${\beta}-APN$ 0.2g/kg/day soluted in mineral water was administrated for 5 days before sacrifice in experimental group. 3 rats on each day was sacrificed on 1, 3, 7, 11 days after stop administration ${\beta}-APN$. Histologic examination and the activity of osteoclasts by tartrate resistant acid phosphatase was observed. The results were as follows : 1. In experimental group, the The small foci of lathyrintic bodies surrounded by palisading fibroblasts were seen obviously on 1, 3 days and decreased after 7 days. On 11 days, fibroblasts of periodontal ligament similar to control group. 2. The lathyrintic bodies were seen in the middle zone of periodontal ligament of pressured area like furcation area, alveolar crest, bone resorption area than tensioned area of apposition area. 3. In experimental group of 1, 3 days, lathyrintic bodies were much seen in the area that osteoclasts was much distributed area. After 7 days, experimental group was seen the control group. In conclusion, rathyrintic bodies were formed by low concentrative ${\beta}-APN$ chiefly on the pressured area like furcation area, alveolar crest, bone resorption area than tensioned area of apposition side in periodontal tissue and concerned with osteoclast cells.

  • PDF