• Title/Summary/Keyword: Periodic Blowing

Search Result 10, Processing Time 0.023 seconds

Effects of Periodic Blowing Through a Spanwise Slot on a Turbulent Boundary Layer (II) - Effects of Blowing Frequency - (슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (II) - 분사 주파수의 효과 -)

  • Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • A direct numerical simulation is performed to analyze the effects of a localized time-periodic blowing on a turbulent boundary layer flow at R $e_{+}$=300. Main emphasis is placed on the blowing frequency effect on near-wall turbulent flow structures at downstream. Wall-normal velocity on a spanwise slot is varied periodically at different frequencies (0.004$\leq$ $f^{+}$$\leq$0.080). The amplitude of periodic blowing is $A^{+}$=0.5 in wall nit, which corresponds to the value of $v_{rms}$ at $y^{+}$=15 without blowing. The frequency responses are scrutinized by examining the phase or time-averaged turbulent statistics. The optimal frequency ( $f^{+}$=0.03) is observed, where maximum increase in Reynolds shear stress, streamwise vorticity fluctuations and energy redistribution occurs. The phase-averaged stretching and tilting term are investigated to analyze the increase of streamwise vorticity fluctuations which are closely related to turbulent coherent structures. It is found that the difference between PB and SB at a high blowing frequencies is negligible.e.e.

Effects of Priodic Blowing Through a Spnnwise Slot on a Turbulent Boundary Layer (I) - Comparison with Steady Blowing - (슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (I) - 정상 가진과의 비교 -)

  • Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.31-40
    • /
    • 2004
  • Direct numerical simulations were performed to analyze the effects of time-periodical blowing through a spanwise slot on a turbulent boundary layer. The blowing velocity was varied in a cyclic manner from 0 to 2A$^{+}$(A$^{+}$ =0.25, 0.50 and 1.00) at a fixed blowing frequency of f$^{+}$=0.017. The effect of steady blowing (SB) was also examined, and the SB results were compared with those for periodic blowing (PB). PB reduced the skin friction near the slot, although to a slightly lesser extent than SB. PB was found to generate a spanwise vortical structure in the downstream of the slot. This vortex generates a reverse flow near the wall, thereby reducing the wall shear stress. The wall-normal and spanwise turbulence intensities under PB are increased as compared to those under SB, whereas the streamwise turbulent intensity under PB is weaker than that under SB. PB enhances more energy redistribution than SB. The periodic response of the streamwise turbulence intensity to PB is propagated to a lesser extent than that of the other components of the turbulence intensities and the Reynolds shear stress.

Study of Wake Control by Blowing and Suction in Front of the Vertical Fence (수직벽 전방에서의 흡입/토출을 이용한 후류제어 연구)

  • Choi, Young-Ho;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • The effect of periodic blowing and suction of upstream flow on the separated shear flow behind the vertical fence was experimentally investigated. The fence was submerged in the turbulent shear flow and DPIV method was used to measure the instantaneous velocity fields around the fence. Periodic blowing and suction flow was precisely generated by the syringe pump. Spanwise nozzle made 2D planar periodic jet flow in front of the fence and the effect of frequency and maximum jet velocity was studied. From the results, the reattachment length can be reduced by 60% of uncontrolled fence case under the control.

Effects of Periodic Local Forcing on a Turbulent Boundary Layer (주기적 국소교란이 난류 경계층에 미치는 영향)

  • Park, Sang-Hyun;Lee, In-Won;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.472-478
    • /
    • 2000
  • An experimental study is performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer, The local forcing is given to the boundary layer flow by means of a sinusoidally oscillating jet issuing from a thin spanwise slot at the wall. The Reynolds number based on the momentum thickness is about $Re_{\theta}=1700$. The effects of local forcing are scrutinized by altering the forcing frequency $(0.011{\leq}f^+{\leq}0.044)$. The forcing amplitude is fixed at $A_0=0.4$. It is found that a small local forcing reduces the skin friction, and this reduction increases with the forcing frequency. A phase-averaging technique is employed to capture the coherent structures. Velocity signals are decomposed into a periodic part and a fluctuating part. An organized spanwise vortical structure is generated by the local forcing. The larger reduction of skin friction for the higher forcing frequencies is attributed to the diminished adverse effect of the secondary vortex. An investigation of the random fluctuation components reveals that turbulent energy is concentrated near the center of vortical structures.

  • PDF

Influence of Periodic Blowing and Suction on a Turbulent Boundary Layer (주기적인 분사/흡입이 난류경계층에 미치는 영향)

  • Park Young-Soo;Park Sang-Hyun;Sung Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.64-74
    • /
    • 2003
  • An experimental study was carried out to investigate the effect of periodic blowing and suction on a turbulent boundary layer. Particle image velocimetry (PIV) was used to probe the characteristics of the flow. The local forcing was introduced to the boundary layer via a sinusoidally-oscillating jet issuing from a thin spanwise slot. Three forcing frequencies (f$^{+}$=0.044, 0.066 and 0.088) with a fixed forcing amplitude (A$^{+}$=0.6) were employed at $Re_{=690. The effect of the forcing angles ($\alpha$=60$^{\circ}$ , 90$^{\circ}$ and 120$^{\circ}$ ) was investigated under the fixed forcing frequency (f$^{+}$=0.088). The PIV results showed that the wall region velocity decreases on imposition of the local forcing. Inspection of phase-averaged velocity profiles revealed that spanwise large-scale vortices were generated in the downstream of the slot and persist further downstream. The highest reduction in skin friction was achieved at highest forcing frequency (f$^{+}$=0.088) and a forcing angle of $\alpha$=120$^{\circ}$. The spatial fraction of the vortices was examined to analyze the skin friction reduction.

  • PDF

Shock Associated Jet Noise Reduction by a Microjet on the Centerline of the Main Jet (노즐 중심에 설치한 마이크로 제트에 의한 충격파 관련소음 저감)

  • 김진화;유정열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.92-97
    • /
    • 2003
  • By using a centerbody injection, an effort to reduce shock assoicated noise is made in an underexpanded sonic nozzle with an exit diameter of 10mm. The centerbody or micro nozzle, aligned with the axis of the main jet has an o.d. of 2mm and i.d. of 1.5mm. When measured at 90$^{\circ}$ relative to the main jet the farfield noise spectra showed that the screech tones and broadband shock associated noise can be significantly reduced simply by varying the length of the centerbody and/or mass fraction of the microjet. The maximum reduction in overall sound pressure level (OASPL) was as much as 9 and 4 ㏈ at fully expanded jet Mach numbers Mi of 1.3 and 1.5, respectively, when the length of the centerbody was varied from 0 to 4 main nozzle diameters without blowing. With the aid of the blowing, the maximum reduction in OASPL increased to 12 and 7 ㏈ at M$\sub$j/=1.3 and 1.5, respectively. The impact pressure field in the main jet plume strongly suggested that the reduced periodic pressure distribution in the shear layers and/or centerline is responsible for the reduced screech and broadband shock associated noise. Therefore, the steady blowing by a micro centerbody is a promising technique for shock noise reduction in a supersonic jet.

  • PDF

Oscillation Characteristics of Turbulent Channel Flow with Wall Blowing (채널유동에서 질량분사에 의한 표면유동의 진동 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • The interaction between wall blowing and oxidizer flow can generate a very complicated flow characteristics in combustion chamber of hybrid rockets. LES analysis was conducted with an in-house CFD code to investigate the features of turbulent flow without chemical reactions. The numerical results reveal that the flow oscillations at a certain frequency exists on the fuel surface, which is analogous to those observed in the solid propellant combustion. However, the observation of oscillating flow at a certain frequency is only limited to a very thin layer adjacent to wall surface and the strength of the oscillation is not strong enough to induce the drastic change in temperature gradient on the surface. The visualization of fluctuating pressure components shows the periodic appearance of relatively high and low pressure regions along the axial direction. This subsequently results in the oscillation of flow at a certain fixed frequency. This implies that the resonance phenomenon would be possible if the external disturbances such as acoustic excitation could be imposed to the oscillating flow in the combustion chamber.

Active control of flow over a sphere using electro-magnetic actuators (전자석 액츄에이터를 이용한 구 주위의 유동제어)

  • Park, Jin-Il;Choi, Hae-Cheon;Jeon, Woo-Pyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.497-501
    • /
    • 2000
  • Flow over a sphere is controlled experimentally at $Re=10^5$ using electro-magnetic actuators. The electro-magnetic actuator developed in this study is composed of the permanent magnet electro-magnet membrane and slot. Eight actuators are placed inside the sphere at equally spaced intervals on a latitudinal plane and the position of the control slot is 76 from the stagnation point. Each actuator generates a periodic blowing and suction through the slot at variable frequencies of $10{\sim}140Hz$ and variable amplitudes by controlling electric signals applied to the electro-magnet. Drag on the sphere measured using a load cell is significantly reduced with control at the forcing frequencies larger than the natural shedding frequency $({\approx}14Hz\;at\;Re=10^5)$, whereas drag is slightly increased at the forcing frequency of 10Hz. It is shown from pressure measurement that the static pressure in the rear surface of the sphere is significantly increased with control, indicating that the separation is delayed due to control. Flow visualizations also show that the detaching shear layer is more attracted to the sphere center with control, the separation bubble size is significantly reduced, and motion inside the bubble is very weak, as compared to the case of uncontrolled flow.

  • PDF

Bulk Flow Pulsations and Film Cooling from Two Rows of Staggered Holes : Effect of Blowing Ratios (주유동의 맥동과 엇갈린 2열 분사홀로부터의 막냉각 : 분사비의 영향)

  • Sohn, Dong Kee;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1195-1207
    • /
    • 1998
  • Periodic pulsations in the static pressure near turbine surfaces as blade rows move relative to each other is one of the important sources of turbine unsteadiness. The present experiment aims to investigate the effect of the static pressure pulsations on the interaction of film coolant flows from two rows of staggered holes with mainstream and its effect on film cooling heat transfer. Potential flow pulsations are generated by the rotating shutter mechanism installed downstream of the test section, The free-stream Strouhal number based on the boundary layer thickness is in the range of 0.033 - 0.33, and the amplitude of about 10-20%. Measured are time-averaged and phase-averaged velocity variations, pressure variations and temperature distributions of the flow field. Experimental conditions are identified by boundary layer measurements. Injectant behavior is characterized by the measurements of unsteady pressure in the plenum chamber and free-stream static pressure. The film cooling effectiveness is evaluated from the insulated wall temperature measurement. It has been found that bulk flow pulsation provides very large diffusion of the injectants and the effectiveness is significantly reduced by the flow pulsations.