• Title/Summary/Keyword: Periodic Adiabatic Condition

Search Result 5, Processing Time 0.02 seconds

Numerical analysis in oscillating flow considering orientation of porous media regenerator (다공성 재생기의 방향성을 고려한 왕복유동 수치해석)

  • Yang, Mun-Heum;Park, Sang-Jin;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1668-1678
    • /
    • 1997
  • Numerical analyses were performed to investigate the characteristics of regenerator in oscillating flow by using moving boundary method and Darcy model. In this work, periodic adiabatic boundary condition was suggested as the boundary condition of adiabatic part so that the effects of the thermal inertia of the wall could be considered. In carrying out numerical analyses, two models were applied and compared. One called isotropic model has the same thermal conductivity in radial and axial directions within a porous media. The other called aeolotropic model has different conductivity in each directions. Isotropic model could not show the advantage of energy reduction which needs to maintain constant wall temperature difference between heater and cooler. But aeolotropic model could simulate the reduction of energy consumption.

Numerical Study on the Three-Dimensional Natural Convection Cooling of Periodically Fully Developed PCB Channel (주기적으로 완전발달된 PCB 채널의 3차원 층류 자연대류 냉각에 관한 수치적 연구)

  • 이관수;백창인;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2751-2761
    • /
    • 1994
  • A numerical investigation on the three-dimensional laminar natural convection heat transfer in the periodically fully developed PCB channel has been performed. When heat generating blocks mounted on the adiabatic wall make a channel with their facing shrouding wall, the flow inside the channel becomes periodically fully developed. A single module in the periodically fully developed region is chosen for computational domain in order to save computer storage and computational time. The periodic boundary condition is applied in the anlaysis. The effects of the parameters such as the Rayleigh number, the number of the modules, and the height of channel are examined to obtain the optimum condition for the enhancement of the cooling effectiveness. The result shows that the cooling effect is improved with increasing Rayleigh number and channel height, and decreasing the number of the module. The result also indicates that increasing the height of the channel and number of the module is recommended for a limited space.

A study about caculating the heating load of the wall of underground space to be used undereground temperature (지중온도를 이용한 지하공간 벽체의 난방부하 계산에 관한 연구)

  • Jeong, Soo-Ill
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • The energy crisis is culminating for the life of the fossil fuel in the future which is come to end at $30{\sim}40$ years. Moreover above 90% of the energy in our country depend on importing and the crisis is more seγious than it of other countries. So architects devote low energy house research and it means underground space research have become public opinion. But there is not an accurate and utility method calculating the heating load of underground space. In this study it is proposed that the heating load is calculated by setting adiabatic thichness of soil and predicting underground temperature. The prediction of the underground temperature is calculated by the latitude, the level, the distance from sea, the condition of earth surface.

HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS (주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진)

  • Jeong, Taekyeong;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.