• Title/Summary/Keyword: Period Runoff

Search Result 427, Processing Time 0.028 seconds

Generation of High Resolution Scenarios for Climate Change Impacts on Water Resources (II): Runoff Scenarios on Each Sub-basins (수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(II): 유역별 유출시나리오 구축)

  • Jung, Il-Won;Bae, Deg-Hyo;Im, Eun-Soon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.205-214
    • /
    • 2007
  • The objective of this study is to generate the regional scale runoff scenarios by using IPCC SRES A2 climate change scenario for analyzing the spatial variation of water resources in Korea. The PRMS model was adopted to simulate long-term stream discharge. To estimate the PRMS model parameters on each sub-basin, the streamflow data at 6 dam sites and Rosenbrock's scheme are used for model parameter calibration and those parameters are translated to ungauged catchments by regionalization method. The other 3 dam sites are selected for the verification of the adequateness of regionalized model parameters in ungagued catchments. The statistical results show that the simulated flows by using regionalized parameters well agree with observed ones. The generated runoff scenarios by climate change are compared with observed data on 4 dam sites for the reference period. The consequences show that the selection of climate station for generating climate scenario affects the reliability of climate scenario at sub-basin. The comparison results of the stream flows between the 30-year baseline period (1971-2000) and future 90-year (2001-2030, 2031-2060, 2061-2090) show that the long-term mean annual runoff in the Han River has increasing trend, while the Nakdong, the Gum, the Youngsan and the Sumjin Rivers have decreasing trend.

Frequency Runoff Analysis by Storm Type using GIS and NRCS Method (GIS와 NRCS방법을 이용한 호우형태에 따른 빈도별 유출 분석)

  • Yeon, Gyu-Bang;Jung, Seung-Kwon;Kim, Joo-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.119-131
    • /
    • 2003
  • Rainfall-runoff process is under the control of hydrologic parameters having temporal and spatial variety. Accordingly, it is difficult to efficiently deal them since many parameters and various information are required to perform hydrologic simulation. So the purposes of this study is to estimate the runoff volume by frequency using GIS techniques and NRCS method. The analysis of frequency rainfall is analyzed using FARD 2002 program and the result of goodness of fit test show that Log-pearson type III is suitable distribute type for the applied area. TOPAZ program used for the analysis of DEM data examining into geological characteristic. NRCS curve numbers estimated using landuse map and soil map for the estimation of effective rain fall in the basin. The storm Type II and Type III were used as the type for the application of NRCS. The result of application show that the runoff volumes above 80 years frequency in return period have similar patterns regardless of Type II and Type III. In addition, the results of comparison with runoff volumes by frequency in the report of river improvement master plan show that it have similar volumes as the relative errors for them of 80, 100 years frequency are each 7.65%, 5.33%.

  • PDF

Estimates of the Water Cycle and River Discharge Change over the Global Land at the End of 21st Century Based on RCP Scenarios of HadGEM2-AO Climate Model (기후모델(HadGEM2-AO)의 대표농도경로(RCP) 시나리오에 따른 21세기 말 육지 물순환 및 대륙별 하천유출량 변화 추정)

  • Kim, Moon-Hyun;Kang, Hyun-Suk;Lee, Johan;Baek, Hee-Jeong;Cho, ChunHo
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.425-441
    • /
    • 2013
  • This study investigates the projections of water cycle, budget and river discharge over land in the world at the end of twenty-first century simulated by atmosphere-ocean climate model of Hadley Centre (HadGEM2-AO) and total runoff integrating pathways (TRIP) based on the RCP scenario. Firstly, to validate the HadGEM2-AO hydrology, the surface water states were evaluated for the present period using precipitation, evaporation, runoff and river discharge. Although this model underestimates the annual precipitation about 0.4 mm $mon^{-1}$, evaporation 3.7 mm $mon^{-1}$, total runoff 1.6 mm $mon^{-1}$ and river discharge 8.6% than observation and reanalysis data, it has good water balance in terms of inflow and outflow at surface. In other words, it indicates the -0.3 mm $mon^{-1}$ of water storage (P-E-R) compared with ERA40 showing -2.4 mm $mon^{-1}$ for the present hydrological climate. At the end of the twenty-first century, annual mean precipitation may decrease in heavy rainfall region, such as northern part of South America, central Africa and eastern of North America, but for increase over the Tropical Western Pacific and East Asian region. Also it can generally increase in high latitudes inland of the Northern Hemisphere. Spatial patterns of annual evaporation and runoff are similar to that of precipitation. And river discharge tends to increase over all continents except for South America including Amazon Basin, due to increased runoff. Overall, HadGEM2-AO prospects that water budget for the future will globally have negative signal (-8.0~-0.3% of change rate) in all RCP scenarios indicating drier phase than the present climate over land.

Variations of Dissolved and Total Phosphorus Concentrations in Irrigation, Flooding, and Drainage Water of Paddy Fields (논 관개수, 담수 및 유출수의 용존인과 총인 농도 변화)

  • Choi, Dongho;Cho, Sohyun;Jung, Jaewoon;Park, Hyunkyu;Choi, Woojung;Yoon, Kwangsik;Kim, Youngsuk
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.434-440
    • /
    • 2017
  • In order to understand the characteristics of phosphorus in the paddy field, this study analyzed $PO_4-P$ and T-P concentrations of irrigation water, flooding water, and runoff from 2008 to 2010. The variation of phosphorous form within hydrologic cycle around the rice paddy field was investigated using the ratio of $PO_4-P$ to TP. In addition, the correlation between pH, EC, and DO in flooding water was analyzed and the factors affecting phosphorus form in paddy field were investigated. The concentration of T-P in flooding water was high during the survey period, and the concentration of T-P in runoff was assumed to be decreased by dilution due to irrigation and rainfall. On the other hand, the ratio of $PO_4-P$ to T-P was lower in flooding water than those of irrigation water and runoff, which was interpreted to be due to the fact that the phosphorus fertilizer was applied in the paddy field but the adsorption was rapidly occurred to the paddy field by the soil. The similar proportions of $PO_4-P$ to T-P in flooding water and runoff suggest that the form of phosphorus outflowed from the paddy is influenced by the form of phosphorus in the flooding water of paddy field. In addition, DO concentration in flooding water showed negative correlation with the concentrations of $PO_4-P$ and T-P. The effort to survey frequent irrigation water quality data is required for the analysis of phosphorus behavior in the paddy water system since concentration of phosphorous and DO in irrigation water would influence rhe form of phosphorous in flooding water and subsequent runoff.

Sensitivity Analysis of Runoff-Quality Parameters in the Urban Basin (도시 배수유역의 유출-수질 특성인자의 민감도 분석)

  • Lee, Jong-Tae;Gang, Tae-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.83-93
    • /
    • 1997
  • The purpose of the study is to analyze the sensitivity of the parameters that affect the runoff and water quality in the studied drainage basins. SWMM model is applied to the four drainage basins located at Namgazwa and Sanbon in Seoul and Gray Haven and Kings Creek in the USA. first of all, the optimum values of the parameters which have least simulation error to the observed data, are detected by iteration procedure. These are used as the standard values which are compared against the procedure. These are used as the standard values which are compared against the varied parameter values. In order to catch the effectiveness of the parameters to the computing result, the parameters are changed step by setp, and the results are compared to the standard results in flowerate and quality of the sewer. The study indicates that the discharge is greatly affected by the types of runoff surface, i.e., impervious area remarkably affects the peak flow and runoff volume while the surface storage affects the runoff volume at mild sloped basins. In addition, the major parameters affecting the pollution concentrations and loadings are the contaminant accumulation coefficient per unit area per time and the continuous dry weather days. Furthermore, the factors that affect the water quality during the initial rainfall period are the rainfall intensity, transport capacity coefficient and its power coefficient. Consequently, in order to simulate the runoff-water quality, it is needed to evaluate previous data in the research performed for the studied basins. To accurately estimated from the tributary areas and the rational computation methods of the pollutants calculation should be introduced.

  • PDF

Uncertainty of Hydro-meteorological Predictions Due to Climate Change in the Republic of Korea (기후변화에 따른 우리나라 수문 기상학적 예측의 불확실성)

  • Nkomozepi, Temba;Chung, Sang-Ok
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.257-267
    • /
    • 2014
  • The impact of the combination of changes in temperature and rainfall due to climate change on surface water resources is important in hydro-meteorological research. In this study, 4 hydro-meteorological (HM) models from the Rainfall Runoff Library in the Catchment Modeling Toolkit were used to model the impact of climate change on runoff in streams for 5 river basins in the Republic of Korea. Future projections from 2021 to 2040 (2030s), 2051 to 2070 (2060s) and 2081 to 2099 (2090s), were derived from 12 General Circulation Models (GCMs) and 3 representative concentration pathways (RCPs). GCM outputs were statistically adjusted and downscaled using Long-Ashton Research Station Weather Generator (LARS-WG) and the HM models were well calibrated and verified for the period from 1999 to 2009. The study showed that there is substantial spatial, temporal and HM uncertainty in the future runoff shown by the interquartile range, range and coefficient of variation. In summary, the aggregated runoff will increase in the future by 10~24%, 7~30% and 11~30% of the respective baseline runoff for the RCP2.6, RCP4.5 and RCP8.5, respectively. This study presents a method to model future stream-flow taking into account the HM model and climate based uncertainty.

Effects of Rainfall Events on Soil in Orchard Field under Herbicide Treatment. 2. Characteristics of Runoff and Soil Erosion (제초제 처리 과수원 포장에서 강우 사상의 효과. 2. 유거와 토양침식의 변화)

  • Chung, Doug-Young;Park, Mi-Suk;Lee, Kyu-Seung;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • Changes in runoff and soil erosion at slightly hilly erosive plots with pear trees over a three-year period were monitored under two distinct types of weed treatment by herbides : (1) pre-emergence herbicide with glyphosate; (2) post-emergence herbicide with paraquat. The numbers of rainfall events from June to Nov for three years of experimental periods were approximately 50 times in the plots having 5.5%to 10.2%slope at an altitude of 125 m. The steady-state infiltration rate was generally increased in the bare plot from which all weeds were removed while it was decreased in the herbicide treated plots and control. The runoffs from the control plot during the experimental periods were always less than those from plots of the herbicide-treated and the bare. The runoff under the same rainfall intensity was decreased in the order of bare, glyphosate, paraquat, and control. This results indicated that the removal time of weed by the different types of herbicides might influenced the runoff rate. For the first two years of the experimental periods, loss of fine fraction was much greater than that of coarse fraction while soil loss was correlated neither with total rainfall nor amount of runoff. The soil erosion rate under the same rainfall intensity was increased in the order of control, glyphosate, paraquat, and bare plot. However, there were not much differences in the soil loss for all plots under a relatively lower rainfall intensity less than 30 mm $day^{-1}$, resulting in rainfall intensity was important factor on soil erosion.

Rainfall Runoff Characteristics and Risk Assessment of Agro-chemicals Used in Golf Links (골프장에 산포되는 농약의 강우유출특성과 risk assessment)

  • ;Tohru Morioka
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 1995
  • A rainfall runoff model described in this paper which is based on Basin- wide Ecological Model(BAWEM) calculates the fate of afro-chemicals in a watershed located of golf links. The rainfall runoff coefficients of afro-chemicals, which are the dominant parameters to predict the movement of agro-chemicals from soil and turfgrass to downstream water, are estimated. Also, the model is used to estimate the level of health risks the residents around golf links are exposed to. The fidelity of rainfall runoff model of afro-chemicals was validated by the observed data obtained during rainy period. The calculated results from this model were found to be in the same order of that of the observed. The rainfall runoff coefficients of four agro-chemicals used in golf links were 5.4$\times$$10^{-3}$, 1.9$\times$$10^{-3}$, 3.0$\times$$10^{-4}$ and 4.4$\times$$10^{-3}$ for flutolanil, isoprothiolane, chlorpyrifos and simazine, respectively The health risk level to the residents around golf links is evaluated to be rather low:the ratio of estimated dose through drinking water to the 10% of ADI(Acceptable Daily Intake) value or VSD for 10-a life time risk varied in the range of 0.005~0.04 and 0.003~0.11, respectively, for both the annual mean and maximum monthly mean cases.

  • PDF

Rainfall and Runoff Characteristics on a Deciduous Forest Watershed in Mt. Ungsek, Sancheong (산청 웅석봉군립공원 내 활엽수림유역의 강수와 유출특성)

  • Kim, Ki-Dae;Choi, Hyung-Tae;Lim, Hong-Geun;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • This study aimed to investigate orographic precipitation and green dam (water conservation function) characteristics in a deciduous forest watershed in the region of Mt. Ungseok, Sancheong, Gyeongnam, South Korea. The rainfall and runoff of the watershed were monitored for six years (2011~2016) at the weather station and at the weir of the watershed, respectively. During the study period, the rainfall in the watershed (mountainous area) was larger than that of the meteorological station (flat area) nearest to the watershed. Besides, compared to the normal year (1981~2010), the rainfall has increased and the seasonal distribution of rainfall of the mountainous area has changed. These changes might have been caused by climate change. The runoff ratio was highest in spring, followed by winter, summer and fall, whilst the runoff was highest in summer, followed by spring, fall and winter. This difference seems to be due to the melting of snow in dry spring and intensive rainfall in summer. The total runoff in the watershed was calculated as $10,143.8ton{\cdot}ha{\cdot}yr^{-1}$.

A comparative study of conceptual model and machine learning model for rainfall-runoff simulation (강우-유출 모의를 위한 개념적 모형과 기계학습 모형의 성능 비교)

  • Lee, Seung Cheol;Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.563-574
    • /
    • 2023
  • Recently, climate change has affected functional responses of river basins to meteorological variables, emphasizing the importance of rainfall-runoff simulation research. Simultaneously, the growing interest in machine learning has led to its increased application in hydrological studies. However, it is not yet clear whether machine learning models are more advantageous than the conventional conceptual models. In this study, we compared the performance of the conventional GR6J model with the machine learning-based Random Forest model across 38 basins in Korea using both gauged and ungauged basin prediction methods. For gauged basin predictions, each model was calibrated or trained using observed daily runoff data, and their performance was evaluted over a separate validation period. Subsequently, ungauged basin simulations were evaluated using proximity-based parameter regionalization with Leave-One-Out Cross-Validation (LOOCV). In gauged basins, the Random Forest consistently outperformed the GR6J, exhibiting superiority across basins regardless of whether they had strong or weak rainfall-runoff correlations. This suggest that the inherent data-driven training structures of machine learning models, in contrast to the conceptual models, offer distinct advantages in data-rich scenarios. However, the advantages of the machine-learning algorithm were not replicated in ungauged basin predictions, resulting in a lower performance than that of the GR6J. In conclusion, this study suggests that while the Random Forest model showed enhanced performance in trained locations, the existing GR6J model may be a better choice for prediction in ungagued basins.