• Title/Summary/Keyword: Perfusion weighted imaging

Search Result 51, Processing Time 0.028 seconds

Acute Cerebral Infarction in a Rabbit Model: Perfusion and Diffusion MR Imaging (가토의 급성 뇌경색에서 관류 및 확산강조 자기공명영상)

  • Heo Suk-Hee;Yim Nam-Yeol;Jeong Gwang-Woo;Yoon Woong;Kim Yun-Hyeon;Jeong Young-Yeon;Chung Tae-Woong;Kim Jeong;Park Jin-Gyoon;Kang Heoung-Keun;Seo Jeong-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.116-123
    • /
    • 2003
  • Purpose : The present study was undertaken to evaluate the usefulness of cerebral diffusion (DWI) and perfusion MR imaging (PWI) in rabbit models with hyperacute cerebral ischemic infarction. Materials and Methods : Experimental cerebral infarction were induced by direct injection of mixture of Histoacryl glue, lipiodol, and tungsten powder into the internal cerebral artery of 6 New-Zealand white rabbits, and they underwent conventional T1 and T2 weighted MR imaging, DWI, and PWI within 1 hour after the occlusion of internal cerebral artery. The PWI scan for each rabbit was obtained at the level of lateral ventricle and 1cm cranial to the basal ganglia. By postprocessing using special imaging software, perfusion images including cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) maps were obtained. The detection of infarcted lesion were evaluated on both perfusion maps and DWI. MTT difference time were measured in the perfusion defect lesion and symmetric contralateral normal cerebral hemisphere. Results : In all rabbits, there was no abnormal signal intensity on T2WI. But on DWI, abnormal high signal intensity, suggesting cerebral infarction, were detected in all rabbits. PWI (rCBV, CBF and MTT map) also showed perfusion defect in all rabbits. In four rabbits, the calculated square of perfusion defect in MTT map is larger than that of CBF map and in two rabbits, the calculated size of perfusion defect in MTT map and CBF map is same. Any rabbits do not show larger perfusion defect on CBF map than MTT map. In comparison between CBF map and DWI, 3 rabbits show larger square of lesion on CBF map than on DWI. The others shows same square of lesion on both technique. The size of lesion shown in 6 MTT map were larger than DWI. In three cases, the size of lesion shown in CBF map is equal to DWI. But these were smaller than MTT map. The calculated square of lesion in CBF map, equal to that of DWI and smaller than MTT map was three. And in one case, the calculated square of perfusion defect in MTT map was largest, and that of DWI was smallest. Conclusion : DWI and PWI may be useful in diagnosing hyperacute cerebral ischemic infarction and in e-valuating the cerebral hemodynamics in the rabbits.

  • PDF

Measurement of Regional Cerebral Blood Volume in Normal Rabbits on Perfusion-weighted MR Image (MR 관류강조영상에서 정상 가토의 국소 뇌혈류량 측정)

  • 박병래;예수영;나상옥;김학진;이석홍;전계록
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.2
    • /
    • pp.100-106
    • /
    • 2000
  • Purpose : To evaluate the usefulness of cerebral blood flow measurement applied to perfusion weighted image with short-scan time single shot gradient echo-planar technique in measuring cerebral blood volume(rCBV) of normal rabbits. Materials and methods : With 2.1-3.6 kg weighted rabbits, image is acquired when they are in supine position in children positioner. Perfusion weighted image is acquired to 44 seconds per 1 second successively. After 4 seconds later, Gd-DTPA 2ml are injected into int. jugular vein with 2 ml per second and normal saline is also injected after that. Same technique is applied 2 times per 30 minites in same rabbit. After Image is obtained in two part of cerebral cortex at vertex, convexity, in one of basal ganglia with choosing about $3-5{\textrm{mm}^2}$ areas. Curve of signal intensity changes in time sequence is drawn. After this images are transmitted by PC and software IDL, regional cerebral blood volume is measured with imaging processing program made by us. Results : With 22 of 24 rabbits, satisfactory 1-2 signal intensity versus time curve is made. Cerebral blood capacity and contrast media stay time (ST) is measured in two cerebral cortex and basal ganglia refering in parietal cerebral cortex. Mean focal cerebral blood flow capacity ratio in cortex was $0.97{\pm}0.35$ and in basal ganglia, $0.99{\pm}0.37$, mean contrast media stay time in cortex was $9.83{\pm}1.63$ sec and in basal gaiglia, $9.42{\pm}1.14$ sec, but there was no statistically significant difference between two areas ($\rho$=0.05). Conclusion : In cerebral cortex and basal ganglia, there is no difference in mean focal blood volume and mean contrast stay time. Therefore, PWI is useful in cerebral blood flow and early diagnosis, prognosis of cerebral ischemic disease. Hereafter, it is helpful in analysing cerebral blood flow changes with comparison difference in rCBV between normal tissue and ischemic tissue, and that with DWI finding in infarcted patient.

  • PDF

Susceptibility Vessel Sign for the Detection of Hyperacute MCA Occlusion: Evaluation with Susceptibility-weighted MR Imaging

  • Lee, Sangmin;Cho, Soo Bueum;Choi, Dae Seob;Park, Sung Eun;Shin, Hwa Seon;Baek, Hye Jin;Choi, Ho Cheol;Kim, Ji-Eun;Choi, Hye Young;Park, Mi Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.105-113
    • /
    • 2016
  • Purpose: Susceptibility vessel sign (SVS) on gradient echo image, which is caused by MR signal loss due to arterial thrombosis, has been reported in acute middle cerebral artery (MCA) infarction. However, the reported sensitivity and diagnostic accuracy of SVS have been variable. Susceptibility-weighted imaging (SWI) is a newly developed MR sequence. Recent studies have found that SWI may be useful in the field of cerebrovascular diseases, especially for detecting the presence of prominent veins, microbleeds and the SVS. The purpose of this study was to evaluate the diagnostic values of SWI for the detection of hyperacute MCA occlusion. Materials and Methods: Sixty-nine patients (37 males, 32 females; 46-89 years old [mean, 69.1]) with acute stroke involving the MCA territory underwent MR imaging within 6 hours after the symptom onset. MR examination included T2, FLAIR (fluid-attenuated inversion recovery), DWI, SWI, PWI (perfusion-weighted imaging), contrast-enhanced MR angiography (MRA) and contrast-enhanced T1. Of these patients, 28 patients also underwent digital subtraction angiography (DSA) within 2 hours after MR examination. Presence or absence of SVS on SWI was assessed without knowledge of clinical, DSA and other MR imaging findings. Results: On MRA or DSA, 34 patients (49.3%) showed MCA occlusion. Of these patients, SVS was detected in 30 (88.2%) on SWI. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of SWI were 88.2%, 97.1%, 96.8%, 89.5% and 92.8%, respectively. Conclusion: SWI was sensitive, specific and accurate for the detection of hyperacute MCA occlusion.

Dynamic Characteristic Change of the Cerebral Blood Volume in Cats Using Perfusion MR Imaging (MR 관류영상을 이용한 고양이 대뇌 혈류량의 동적특성 변화)

  • 박병래;김학진;전계록
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.243-251
    • /
    • 2004
  • This study was to quantitative analysis compare to dynamic characteristic change of the regional cerebral blood volume (rCBV) after development of cerebral fat embolism in cats using perfusion MR Imaging. Forty-four adult rats were used. Triolein (n = 15), oleic acid (n = 9) and linoleic acid (n = 11) were injected into the internal carotid artery using microcatheter through the transfemoral approach. Polyvinyl alcohol (Ivalon) (n = 9) was injected as a control group. Perfusion MR images were obtained at 30 minutes and 2 hours after embolization, based on T2 and diffusion-weighted images. The data was time-to-signal intensity curve and ΔR$_2$* curve were obtained continuously with the aid of home-maid image proc in.leased significantly at 2 hours compared with those of 30 minutes (P<0.005). In conclusion, cerebral blood flow decreased in cerebral fat embolism immediately after embolization and recovered remarkably in time course. It is thought that clinically informations to dynamic characteristic change of the cerebral hemodynamics to the early finding in cerebral infarction by DWI and PWI

Effect of Gd-DTPA on Diffusion in Canine Brain with Hyperacute Stroke (초급성 뇌경색을 일으킨 개에서 Gd-조영제의 주입이 뇌의 확산에 미치는 영향)

  • 김범수;정소령;신경섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.158-165
    • /
    • 2002
  • Purpose : To evaluate the effect of Gd-DTPA on signal intensity of diffusion-weighted magnetic resonance(MR) image and apparent diffuse coefficient (ADC) in dog brain with hype racute stroke. Materials and methods : Experimental canine model of hyperacute cerebral infarction was made by selective intraarterial embolization with particulate embolic material. Diffusion-weighted MR imaging was performed in five dogs at 1 hour after the embolization of internal carotid artery. After intravenous bolus injection of Gd- DTPA, additional 11 diffusion-weighted MR images were serially obtained from 2 minutes to 90 minutes after injection in each dog. The author evaluated findings of hyperacute cerebral infarction on diffusion-weighted MR imaging, and calculated mean signal intensity and mean ADC in infarcted region and contralateral normal region. Statistical analysis of mean signal intensity, mean ADC and contrast-noise ratio before and after Gd-DTPA injection was performed. Results : Hyperacute cerebral infarction developed in all five dogs on diffusion-weighted MR images obtained 1 hour after embolization. The area of hyperacute infarction had steady increase in signal intensity on diffusion-weighted MR image and decrease in ADC. In normal perfusion area, decrease in signal intensity was observed at 2 minutes the Gd-DTPA injection, whereas ADC did not changed. Conclusion : Intravenous injection of Gd-DTPA had no influence on ADC in both hyperacute infarction and normally perfused are a, but caused initial transient signal reduction in normally perfused area on diffusion-weighted MR image due to susceptibility effect of Gd-DTPA. It is important to calculate ADC in evaluating the effect of diffusion after injection of Gd-DTPA.

  • PDF

Perfusion RRI of the Brain Using Oxygen Inhalation (산소 호흡을 이용한 뇌의 관류 자기공명영상)

  • 최순섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • Purpose : To know the possibility of clinical application of MRI using oxygen inhalation as a perfusion MRI Materials and methods : Two healthy volunteers and three patients of one moyamoya disease, one acute infarction and one meningioma were studied using a 1.5 Tesla MRI unit. Oxygen (15 liters/min) mixed with room air was given using face mask from 8 second to 35 second during the study. Images were acquired 25 times (scan time per study were 1.6 seconds) using susceptibility contrast EPI (echo planar image) sequence. Difference maps were acquired by early (study 12-18), and late (study 19-25) O2 inhalation image groups minus pre-O2 inhalation image group (study 3-9) with a Z-score of 0.7-1.0 using VB31C program of Magneton Vision. The resulting perfusion images were created by superimposition of difference maps on corresponding T1 weighted anatomic images. On moyamoya patient, similar perfusion images were acquired after Gd-DTPA injection, and compared with O2 inhalation perfusion images. Results ; The author can get the perfusion images of the brain by oxygen inhalation with susceptibility contrast EPI sequence at the volunteers, and the patient of moyomoya disease, acute infarction and meningioma. On moyamoya patient, perfusion images with O2 inhalation are similar with perfusion images by Gd-DTPA injection. Conclusion 1 This study has demonstrated that the susceptibility contrast EPI by oxygen inhalation can be used as the clinically useful perfusion MRI technique

  • PDF

Clinical Usefulness of Arterial Spin Labeling Perfusion MR Imaging in Acute Ischemic Stroke (급성 허혈성 뇌경색 환자에서 동맥스핀표지 관류자기공명영상의 유용성)

  • Oh, Keun-Taek;Jung, Hong-Ryang;Lim, Cheong-Hwan;Cho, Young-Ki;Ha, Bon-Chul;Hong, Doung-Hee
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.323-331
    • /
    • 2011
  • We evaluated clinical usefulness of Arterial spin labeling perfusion MR imaging on the acute ischemic cerebral infarction patients through this study. We compared 22 patients who were done with DSC imaging and ASL imaging in admitted emergency room with acute ischemic cerebral infarction, with 36 normal comparison persons (DSC image on 21persons, ASL images on 15persons). Siemens Magnetom Verio 3.0T with 12 channel head coil was used for this study. DSC image obtained 4 maps(rCBV, rCBF, rMTT, TTP) through post-processing. For qualitative analysis we compared the area of lesion macro-diagonal with the size of diffusion weighted MR image for rMTT, TTP, rCBF, rCBV, ASL maps. For Quantitative analysis we analyzed significant correlations between less than 3 cm infarction group and normal comparison group using mean relative value of flowing image with Mann-Whitney U test. TTP(95.5%) and rCBF(95.5%) maps showed high recognition rate in qualitative analysis for >3cm infarction group. The rCBF and rCBV map tests were highly related with final stage stroke areas. Mean relative value of infarction group showed a significant correlations in quantitative analysis(p<0.05). As a conclusion, arterial spin labeling image showed high lesion recognition rate in the >3cm infarction group. Mean relative values in quantitative evaluation were used for reference data. If we do more sustainable researches, ASL image will be useful for an early diagnosis of cerebral infarction, determination of the range of ischemic pneumbra and effective treatments.

Perfusion MR Imaging of the Brain Tumor: Preliminary Report (뇌종야의 관류 자기공명영상: 예비보고)

  • 김홍대;장기현;성수옥;한문희;한만청
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.119-124
    • /
    • 1997
  • Purpose: To assess the utility of magnetic resonance(MR) cerebral blood volume (CBV) map in the evaluation of brain tumors. Materials and Methods: We performed perfusion MR imaing preoperatively in the consecutive IS patients with intracranial masses(3 meningiomas, 2 glioblastoma multiformes, 3 low grade gliomas, 1 lymphoma, 1 germinoma, 1 neurocytoma, 1 metastasis, 2 abscesses, 1 radionecrosis). The average age of the patients was 42 years (22yr -68yr), composed of 10 males and S females. All MR images were obtained at l.ST imager(Signa, CE Medical Systems, Milwaukee, Wisconsin). The regional CBV map was obtained on the theoretical basis of susceptibility difference induced by first pass circulation of contrast media. (contrast media: IScc of gadopentate dimeglumine, about 2ml/sec by hand, starting at 10 second after first baseline scan). For each patient, a total of 480 images (6 slices, 80 images/slice in 160 sec) were obtained by using gradient echo(CE) single shot echo-planar image(EPI) sequence (TR 2000ms, TE SOms, flip angle $90^{\circ}$, FOV $240{\times}240mm,{\;}matrix{\;}128{\times}128$, slice-thick/gap S/2.S). After data collection, the raw data were transferred to CE workstation and rCBV maps were generated from the numerical integration of ${\Delta}R2^{*} on a voxel by voxel basis, with home made software (${\Delta}R2^{*}=-ln (S/SO)/TE). For easy visual interpretation, relative RCB color coding with reference to the normal white matter was applied and color rCBV maps were obtained. The findings of perfusion MR image were retrospectively correlated with Cd-enhanced images with focus on the degree and extent of perfusion and contrast enhancement. Results: Two cases of glioblastoma multiforme with rim enhancement on Cd-enhanced Tl weighted image showed increased perfusion in the peripheral rim and decreased perfusion in the central necrosis portion. The low grade gliomas appeared as a low perfusion area with poorly defined margin. In 2 cases of brain abscess, the degree of perfusion was similar to that of the normal white matter in the peripheral enhancing rim and was low in the central portion. All meningiomas showed diffuse homogeneous increased perfusion of moderate or high degree. One each of lymphoma and germinoma showed homogenously decreased perfusion with well defined margin. The central neurocytoma showed multifocal increased perfusion areas of moderate or high degree. A few nodules of the multiple metastasis showed increased perfusion of moderate degree. One radionecrosis revealed multiple foci of increased perfusion within the area of decreased perfusion. Conclusion: The rCBV map appears to correlate well with the perfusion state of brain tumor, and may be helpful in discrimination between low grade and high grade gliomas. The further study is needed to clarify the role of perfusion MR image in the evaluation of brain tumor.

  • PDF

Pearls and Potential Pitfalls for Correct Diagnosis of Ovarian Cystadenofibroma in MRI: A Pictorial Essay

  • Giacomo Avesani;Gianluca Caliolo;Benedetta Gui;Federica Petta;Camilla Panico;Viviana La Manna;Francesca Moro;Antonia Carla Testa;Giovanni Scambia;Riccardo Manfredi
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1809-1821
    • /
    • 2021
  • Ovarian cystadenofibroma is a benign ovarian tumor that is characterized by a consistent percentage of masses, which remain indeterminate in ultrasonography and require magnetic resonance (MR) investigation; they may mimic borderline or malignant lesions. Three main morphologic patterns, resembling different ovarian neoplasms, can be identified in cystadenofibromas: multilocular solid lesions, unilocular cystic lesions with parietal thickening, and purely cystic masses. However, a cystoadenofibroma has typical features, such as T2-weighted hypointensity associated with no restrictions in diffusion-weighted imaging (the so-called "dark-dark appearance") and progressive post-contrast enhancement (type I perfusion curve). The purpose of this study was to review the features of ovarian cystadenofibromas in MR imaging and to suggest pearls and pitfalls regarding their correct diagnosis.

Assessment of Non-permeability of Gd-DTPA for Dynamic Susceptibility Contrast in Human Brain: A Preliminary Study Using Non-linear Curve Fitting (뇌영역의 동적 자화율 대조도 영상에서 Gd-DTPA 조영제의 비투과성 조사: 새로운 비선형 곡선조화 알고리즘 개발의 예비연구)

  • Yoon, Seong-Ik;Jahng, Geon-Ho;Khang, Hyun-Soo;Kim, Young-Joo;Choel, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • To develop an advanced non-linear curve fitting (NLCF) algorithm for performing dynamic susceptibility contrast study of the brain. The first pass effects give rise to spuriously high estimates of $K^{trans}$ for the voxels that represent the large vascular components. An explicit threshold value was used to reject voxels. The blood perfusion and volume estimation were accurately evaluated in the $T2^*$-weighted dynamic contrast enhanced (DCE)-MR images. From each of the recalculated parameters, a perfusion weighted image was outlined by using the modified non-linear curve fitting algorithm. The present study demonstrated an improvement of an estimation of the kinetic parameters from the DCE $T2^*$-weighted magnetic resonance imaging data with using contrast agents.

  • PDF