• Title/Summary/Keyword: Performance tester

Search Result 300, Processing Time 0.026 seconds

A Study on the Fabric Drape Evaluation Using a 3D Scanning System Based on Depth Camera with Elevating Device

  • Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.19 no.6
    • /
    • pp.28-41
    • /
    • 2015
  • Properties of textile fabrics influence the appearance, aesthetics, and performance of garment. Drape and related properties of fabrics affect profoundly the static and dynamic appearance during wearer's movement. The three dimensional shape of the folded structure often deforms with time or with subtle vibration around the fabric specimen during the drape measurement. Due to the uneven and complex nature of fabrics, the overall shape of the fabric specimen on the drape tester often becomes unstable. There is a need to understand the fundamental mechanisms of how draping may generate pleasing forms. Two drape test methods, conventional Cusick drape test, and in-built drape tester, based on a depth camera, are compared. Fabric specimens including cotton, linen, silk, wool, polyester, and rayon are investigated for the fabric drape and other physical/mechanical parameters. Drape coefficient values of fabric specimens are compared based on the final drape images, together with the intermediate 3D drape images of the specimens during elevation process of the drape tester equipped with a stepper motor system. The correlation coefficient between the data based on the two methods is reasonably high. Another advantage from the depth camera system is that it allows further analysis of three-dimensional information regarding the fabric drape shape, including the shape of nodes or crest and trough.

Check4Urine: Smartphone-based Portable Urine-analysis System (Check4Urine: 스마트폰 기반 휴대용 소변검사 시스템)

  • Cho, Jungjae;Yoo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 2015
  • Recently, a few image-processing based mobile urine testers have actively been studied since the urine-analysis result can be available to the user in real time immediately after the test is done. However, the accuracy of test result can be severely degraded due to variable illumination environments and a variety of manners to capture the image with a camera embedded in the smartphone according to different users. This paper proposes the Check4Urine system, a novel smartphone-based portable urine-analysis tester and provides three techniques to improve such a performance degradation problem robust to various test environments and disturbances, which are the compensation algorithm to correct the varying illumination effect, an urine strip detection algorithm robust to edge loss of the object image, and the color decision algorithm based on the pre-processed reference table. Experimental results show that the proposed Check4Urine system increases the accuracy of urine-analysis by 20-50% at various test conditions, compared with the existing image-processing based mobile urine tester.

A Study on a Tester of the MEGACO Protocol Call Processing for the Next Generation Convergence Network (차세대 통합네트워크를 위한 MEGACO 프로토콜 호 처리 시험기 연구)

  • Lee, Kyou-Ho;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2265-2270
    • /
    • 2007
  • This paper discusses a tester of functionality and call processing performance, based on the MEGACO/H.248 protocol that both IETF and ITU-T recommend as a media gateway control protocol, of both a media gateway controller and an access gateway which constitute a next generation convergence network. Effective methods, a functional architecture and implementation for such testification are provided. Especially included are not only a virtual emulation function of analog subscriber lines connecting to an access gateway, but also a tester emulated as a counter system of the protocol for the testifying a media gateway controller and an access gateway system.

Rig Tester Development for the Performance Validation of a Piston Oil Cooling Gallery (피스톤 오일 냉각 유로의 성능 검증을 위한 리그 시험기 개발)

  • Chun, Sang-Myung;Lee, Jeong-Keun;Joo, Dae-Heon;Ryu, Kwan-Ho;Ha, Dae-Hong
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.387-398
    • /
    • 2009
  • The operation condition of recently designed pistons for high power and high speed diesel engine become more severe due to the increment of combustion pressure and temperature. So, in order to overcome high temperature, the application of the mono-metal cast aluminum alloy piston featuring an enclosed cast-in open cooling gallery has increased. In this research, it is developed a PCJ (piston cooling jet) rig tester, described the test procedure and validated the performance of sample piston cooling gallery design. Then the test rig will be used for developing the design technology of piston cooling gallery. The test rig is composed with oil reservoir and pumping system, oil jet system, piston fixing and moving system, collecting oil measuring system, and data measuring and recording system. It will be measured collecting efficiencies under conditions of a few piston positions, oil jet pressures and oil viscosities for a piston cooling gallery. Furthermore, the PCJ rig tester will be used for the optimum design of the oil cooling gallery which being applied to increase the cooling efficiency of pistons in diesel engines satisfying the EURO V emission regulation and the more.

Study on the Design of a Rotary-type LSM and Test Equipment for Design Verification of LSM for Ultra-high-speed Train (초고속열차용 LSM 설계 검증을 위한 회전형 구조의 LSM 및 시험기 설계 연구)

  • Park, Chan-Bae
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.196-202
    • /
    • 2017
  • A very long test track is required for high-speed operation test of the real-scale Linear Synchronous Motor (LSM) for ultra-high-speed trains. The required length results in huge construction cost and economic loss if any error occurs during development. Therefore, validation study of the LSM design technology using a low-cost small-scale model must be carried out in the early research stages. It is possible to deduce an optimal winding method for the armature and determine the mechanical properties of the LSM through a performance tester that applies a rotary-type small-scale LSM model. In addition, it is possible to utilize previous research on LSM control systems. Therefore, a basic design model, comprising a rotary-type LSM tester that meets the requirements for the propulsion of 600km/h-class ultra-high-speed trains, is derived in this study. Finally, an optimal model, which has a stable structure under the condition of 1500rpm or more high-speed rotation, is derived by electromagnetic and mechanical stiffness analysis.

Performance Evaluation of Nano-Lubricants at Journal Bearing of Scroll Compressors (나노 윤활유를 이용한 스크롤 압축기 저널 베어링의 윤활특성 평가)

  • Kim, Kyong-Min;Hwang, Yu-Jin;Lee, Kwang-Ho;Sung, Chi-Un;Lee, Jae-Keun;Jung, Won-Hyun;Kim, Sung-Choon;Jin, Hong-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.189-193
    • /
    • 2008
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles in the journal bearing of scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester and the journal bearing tester for measuring friction surface temperature and the coefficient of friction at the journal bearing tester. In journal bearing test, the average friction coefficient of high concentration nano-oil was decreased down to 18% compared to raw oil under 4,500 N and 3,600 rpm. It is believed that nano particles can be coated on the wear surfaces and the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were measured with straightness. carbon nano oil enhances the characteristics of the anti-wear and friction at the joural bearing of scroll compressors.

  • PDF

Evaluation of Material Durability by Identifying the Relationship between Contact Angle after Wear and Self-cleaning Effect Using Rolling Wear Tester (구름 마모시험 장비(Rolling wear tester)를 이용한 마모 후의 접촉각과 자가세정 효과와의 관계 규명을 통한 재료 내구성 평가)

  • Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Young Jin Park;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.256-261
    • /
    • 2023
  • This study is conducted to evaluate the durability of superhydrophobic surfaces, with a focus on two aspects: contact angle measurement and self-cleaning-performance analysis. Superhydrophobic copper and aluminum surfaces are fabricated using the immersion method and subjected to a rolling wear test, in which a 2 kg weight is placed on a rolling tester, under loaded conditions. To evaluate their durability, the contact angles of the specimens are measured for each cycle. In addition, the surface deformation of the specimens before and after the test is analyzed through SEM imaging and EDS mapping. The degradation of the self-cleaning performance is evaluated before and after the wear test. The results show that superhydrophobic aluminum is approximately 4.5 times more durable than superhydrophobic copper; the copper and aluminum specimens could endure 21,000 and 4,300 cycles of wear, respectively. The results of the self-cleaning test demonstrate that superhydrophobic aluminum is superior to superhydrophobic copper. After the wear test, the self-cleaning rates of the copper and aluminum specimens decrease to 72.7% and 83.4%, respectively. The relatively minor decrease in the self-cleaning rate of the aluminum specimen, despite the large number of wear cycles, confirms that the superhydrophobic aluminum specimen is more durable than its copper counterpart. This study is expected to aid in evaluating the durability of superhydrophobic surfaces in the future owing to the advantage of performing wear tests on superhydrophobic surfaces without damaging the surface coating.

Micro Scale Mechanical property of Polymeric materials for FPD(Flat Panel display) (FPD에 사용되는 고분자 재료의 기계적 물성특성 연구)

  • Lee N.K.;Lee H.J.;Lee H.W.;Chong E.G.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.220-224
    • /
    • 2005
  • The technology trend of Flat Panel Display (FPD) equipments have been demanded that there are compact and multi-function. Therefore, nano/micro scale patterned on polymeric materials of Back Light Unit (BLU) in Liquid Crystal Display (LCD) that has been investigated. This paper describes a series of Horizontal Type Micro Tensile Tester that were carried out to investigate the load strain distance performance of typical polymeric material sheets. The polymeric materials film that micro size shaped specimens for tensile test are used by Cold-Isostatic-Press (CIP). Test equipment is Horizontal type Micro Tensile Tester that is presented to measure the micro scale mechanical property of thin film for FPD. This paper presents which easy testing tools measure for micro patterned on polyethylene (PET) specimens.

  • PDF