• Title/Summary/Keyword: Performance shaping factor(PSF)

Search Result 3, Processing Time 0.017 seconds

A Study on Performance Shaping Factors of Human Error in Toxic Gas Facilities (독성가스시설의 인적오류 수행영향인자에 관한 연구)

  • Kim, Youngran;Jang, Seo-Il;Shin, Dongil;Kim, Tae-Ok;Park, Kyoshik
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.68-75
    • /
    • 2014
  • It is necessary to control and evaluate human factors to reduce economic loss by major accident in toxic gas facilities. Conventional works to evaluate hazards have been focused on mechanical and systematic failure, while only a little works have been studied on managing human errors. In this work, a classification system of performance shaping factor (PSF) was suggested to consist human error in managing accident in the toxic gas facilities. Four types of PSFs (human, system, task characteristics, and task environment) were collected, reviewed, and analyzed to be categorized selected according their characteristics of situational, task, and environmental parameters. The PSFs were further modified to set up PSF systems adequate to evaluate human error, and the proposed system to consist PSFs to evaluate human error was further studied through accident analysis in toxic gas facilities.

Development of Human Factor Risk Model for Use in Disaster System A Study on Safety Analysis (재난시스템에서 사용하기 위한 인적요인 위험 모델의 개발)

  • Park, Jong hun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.227-228
    • /
    • 2022
  • 전통적인 HRA(Human Reliability Analysis)방법은 특정 애플리케이션 또는 산업을 염두에 두고 있으며. 또한 이러한 방법은 종종 복잡하며, 시간이 많이 걸리고 적용하는 데 비용이 많이 들며 직접 비교하기에는 적합하지 않다. 제안된 HFHM(Human Factors Hazard Model: 인적 요인 위험 모델)은 기검증되고 시간 테스트를 거친 FTA(Fault Tree Analysis:결함 트리 분석)및 ETA(Event Tree Analysis:이벤트 트리 분석)의 확률 분석 도구 및 새로 개발된 HEP(Human Error Probability:인적 오류 확률)예측 도구와 통합되고, 인간과 관련된 PSF(Performance Shaping Factors:성능 형성 요인)를 중심으로 새로운 접근 방식으로 개발되었다. 인간-시스템은 상호작용으로 인한 재난사고 가능성을 모델링하는 위험분석 접근법 HFHM은 다음과 같은 상용 소프트웨어 도구 내에서 예시되고 자동화된다. HFHM에서 생성된 데이터는 SE 분석가 및 설계에 대한 표준화된 가이드로 사용될 수 있다. 본 연구에서는 인적 위험을 예측하는 이 새로운 접근 방식을 통해, 전체 시스템에 대한 포괄적인 재난안전 분석을 가능하게 한다.

  • PDF

A Study on the Performance of Causal Links between Error Causes: Application to Railroad Accident Cases

  • Kim, Dong San;Yoon, Wan Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.535-540
    • /
    • 2013
  • Objective: The aim of this study is to evaluate the effectiveness and efficiency of causal links between various error causes in human error analysis. Background: As finding root causes of human error in safety-critical systems is often a cognitively demanding and time-consuming task, it is particularly necessary to develop a method for improving both the quality and efficiency of the task. Although a few methods such as CREAM have suggested causal linking between error causes as a means to enhance the quality and efficiency of human error analysis, no published research to date has evaluated the performance of the causal links. Method: The performance of the CREAM links between error causes were evaluated with 80 railway accident investigation reports from the UK. From each report, errorneous actions of operators were derived, and for each error, candidate causes were found by following the predefined links. Two measures, coverage and selectivity, were used to evaluate the effectiveness and efficiency of the links, respectively. Results: On average, 96% of error causes actually included in the accident reports were found by following the causal links, and among the total of 121 possible error causes, the number of error causes to be examined further was reduced to one-tenth on average. As an additional result of this work, frequent error causes and frequently used links are provided. Conclusion: This result implies that the predefined causal links between error causes can significantly reduce the time and effort required to find the multiple levels of error causes and their causal relations without losing the quality of the results. Application: The CREAM links can be applied to human error analysis in any industry with minor modifications.