• 제목/요약/키워드: Performance of heat pump

검색결과 834건 처리시간 0.029초

열펌프 열량계 구조 및 성능 특성 연구 (The Study on the Structure and Performance of Heat Pump Calorimeter)

  • 박승병;이상혁;최진일;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제11권4호
    • /
    • pp.7-13
    • /
    • 2015
  • The efficiency, reliability and performance of any heat pump unit can only be ascertained after it has been tested and rated. For this reason, specific facilities, equiped with testing plants are built. Heat pump calorimeter is the facilities used by most of these testing facilities in their rating and certification process. The ultimate function of calorimeters is to, control and maintain the constant standard test conditions (indoor/outdoor entering temperatures and flow rate etc) during testing period. In this study, the test standards of heat pump unit and the structure of the calorimeter are surveyed. In addition, this study analyzes the total energy consumption of a water to water heat pump calorimeter. Heat pump calorimeter consumed much energy to excute the heat pump tests. The energy consumption of the calorimeter was higher than the heat pump unit, and it was increased as the heat pump unit capacity decreased.

R744와 R22를 적용한 태양열 하이브리드 열펌프의 성능 시뮬레이션 비교 분석 (Simulation Analysis on Performance Comparison between R744 and R22 Solar Hybrid Heat Pump)

  • 강변;조홍현
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.1-10
    • /
    • 2013
  • Simulation study of a solar hybrid heat pump using R744 and R22 for residential applications was carried out according to heat pump operating temperature, outdoor temperature and solar radiation. As a result, when the heat pump operating temperature increases from $40^{\circ}C$ to $48^{\circ}C$, the COP of a R744 and R22 heat pump system decrease from 2.15 to 1.7 and from 3.09 to 2.69, respectively. Besides, as the outdoor temperature rises from $3^{\circ}C$ to $11^{\circ}C$, the COP of R744 and R22 heat pump system increase from 1.73 to 2.12 and from 2.73 to 3.02. When the solar radiation increases from 10 to 20 $MJ/m^2$, the collector operating time and collector efficiency of R744 heat pump increase 10.3 times and 50.7%, respectively. The performance of R744 solar hybird heat pump is more sensitive to operation condition compared to that of R22. Besides, the solar heating system is more effective to the R744 heat pump system.

열펌프 성능향상을 위한 공기 열교환기 부착효과 (Attachment of the Air Heat Exchanger for COP Improvement in the Heat Pump)

  • 노정근;송현갑;박용규
    • Journal of Biosystems Engineering
    • /
    • 제27권3호
    • /
    • pp.235-240
    • /
    • 2002
  • Performance of the heat pump with attaching an air heat exchanger was investigated in the heating condition when the air heat exchanger was worked in the ambient air temperature of -5 to 11$\^{C}$ and air flow rate of 542 to 747 ㎡/h. Performance tests for heating condition were conducted in an experimental room equipped with heat pump. The performance tests were performed in a ambient temperature of -4 ∼ 11$\^{C}$, and room temperature of 4∼22$\^{C}$ respectively. Measured data(temperature, capacity of heat transfer and consumption of electronic power) were analyzed to the efficiency of HEEVA(Heat Exchanger fur the Evaporator), overall heat transfer coefficient and COP of heat pump. The results of inlet temperature for evaporator increased that the temperature was 2 ∼6$\^{C}$, and inlet temperature for condenser decreased that the temperature was 3 ∼ 8$\^{C}$. The results of comparing efficiency of HEEVA for the ratio of heat exchange between hot air and cold air showed that efficiency were considered to 91% because of the ratio of 83∼98%. The results of comparing of COP for the heat pump increased that improvement COP was approximately 0.3∼7.5 than HEEVA had not been operated.

하천수열원을 이용한 2단압축 열펌프의 난방성능 시뮬레이션 (Simulation on the Heating Performance of a 2-Stage Compression Heat Pump System Using River Water)

  • 박차식;김보현;김용찬;이영수;방기영
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.1005-1013
    • /
    • 2005
  • The use of river water as a heat source of a heat pump has the advantage in the performance compared to the use of atmospheric air because the temperature variation of river water over the year is relatively small. In this study, the performance of the heat pump system using river water as a heat source was numerically investigated. A simulation model for the 2-stage compression heat pump system was developed with each component model composed of compressors, heat exchangers, a flash tank and electronic expansion devices. The peformance of the heat pump system using river water was improved by $50\%$ compared to that using atmospheric air in winter conditions.

원예시설의 에너지 부하패턴을 고려한 축열식 지열시스템 설계법에 관한 연구 (Design method of heat storage type ground source heat pump system considering energy load pattern of greenhouse)

  • 유민경;남유진;이광호
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.57-63
    • /
    • 2015
  • Purpose: Ground source heat pump system has been attracted in the horticulture industry for the reduction of energy costs and the increasing of farm income. Even though it has higher initial costs, if it uses in combination with heat storage, it is able to reduce the initial costs and operate efficiently. In order to have significant effect of heat storage type ground source heat pump system, it is required to design the capacity considering various conditions such as energy load pattern and operating schedule. Method: In this study, we have designed heat storage type ground source heat pump system in 5 cases by the operating schedule, and examined the system to find the most economic and having superb performance regarding the system COP(Coefficient of Performance) and energy consumption, using dynamic energy simulation, TRNSYS 17. Result: Conventional ground source heat pump system has lower energy consumption than heat storage type, but following the result of LCC(Life Cycle Cost) analysis, the heat storage type was more economic due to the initial costs. In addition, it has the most efficient performance and energy costs in the case of the smallest heat storage time.

실내 부하 변동에 따른 탄화수소계 냉매를 이용한 히트펌프 성능에 관한 실험적 연구 (An Experimental Study on Performance of Heat Pump System Using Hydrocarbon Refrigerants by Changing Indoor Load)

  • 김재돌;성광훈;정석권;윤정인;이호생
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.204-210
    • /
    • 2006
  • This study presents heat pump system characteristics using hydrocarbon refrigerants as alternative refrigerant for R-22 with respect to the variation of indoor load. Pure R-22 and R-290. R-600a, R-1270 were considered as working fluids The experimental apparatus was constructed to investigate the performance of heat pump using the air as a heat source. The performance were calculated based on compression shaft work. refrigeration capacity. pressure ratio, discharge temperature and COP. The experimental results show that the COP and refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. Through the above. hydrocarbon refrigerants are good alternatives in the heat pump system for R-22.

지열원 멀티 열펌프 시스템의 시설원예 적용 난방성능 특성 실증 연구 (Heating Performance of a Ground Source Multi-Heat Pump for a Greenhouse)

  • 강신형;최종민;문제명;권형진
    • 설비공학논문집
    • /
    • 제22권6호
    • /
    • pp.337-344
    • /
    • 2010
  • Good plant-growth conditions can be achieved by means of using greenhouses. One of the main issues in greenhouse cultivation is energy savings through the development of high efficient heating and cooling system. GSHPs are one of the recommended systems to cope with this pending need. The aim of this study is to investigate the heating performance of ground source multi-heat pump system installed in a greenhouse under part load conditions. Daily average heating COP of the heat pump unit was very high by at least 7.4, because of relatively large condenser, evaporator, and mass flow rate through ground loop heat exchanger. However, the system COP, overall heating coefficient of the performance of the system with heat pump unit and GLHX, decreased drastically due to relatively large power consumption of circulating pump under part load condition. It is suggested that the technology to enhance the performance of the ground source multi-heat pump system for a greenhouse under part load conditions should be developed.

이중관 열교환기를 사용한 물 대 공기 열펌프 시스템의 설계와 성능해석 (Design and performance analysis of water-to-air heat pump system using double-tube heat exchanger)

  • 한도영;박관준
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.462-471
    • /
    • 1997
  • The water-to-air heat pump system requires relatively lower energy consumption and less installation space. The heat exchangers used for this system are the finned-tube type for the indoor unit and the double-tube type for the outdoor unit. Mathematical models for this system are developed and programmed in computer. Experimental data from various conditions are obtained and compared with calculated values from the computer simulation program. Differences of cooling capacity and COP are 1.25% and 0.47%, and those of heating capacity and COP are 0.51% and 0.13%, respectively. Simulation results are in good agreement with test results. Therefore, the developed program is effectively used for the design and the performance prediction of water-to-air heat pump system.

  • PDF

캐스케이드 열펌프의 저단 사이클 충전량 변화에 따른 성능 특성 (Influence of Low Stage Refrigerant Charge Amount on the Performance of Cascade Heat Pump)

  • 박승병;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제11권1호
    • /
    • pp.15-20
    • /
    • 2015
  • In this study, the optimization and performance characteristics of a cascade heat pump system was analyzed with the variation of low stage refrigerant charge amount. The cascade heat pump was designed and constructed with R134a and R410A as the refrigerant for high stage and low stage cycle, respectively. Experiments were conducted by varying the low stage charge amount and the performance characteristics of the cascade heat pump were studied. The refrigerant charge amount of the low stage cycle was varied between the ranges of -15% and +10% of the optimum charge amount. The performance variation experienced in the cascade heat pump due to the variation of refrigerant charge amount shows greater effect in the undercharge regions than the overcharge regions. COP reduction in the undercharge region is larger than the decrease in the overcharge region. Some cycle variation such as power consumption and cycle pressure according to low stage refrigerant charge amount showed different trends comparing with those according to high stage refrrgerant charge amount. Therefore, the optimum charge amount of the cascade heat pump should be determined based on the experimental data obtained by the variation of high and low stage refrigerant charge amount.

시설원예용 지열 및 태양열 이용 하이브리드 히트펌프 시스템의 난방성능에 관한 연구 (Study on Heating Performance of Hybrid Heat Pump System Using Geothermal Source and Solar Heat for Protected Horticulture)

  • 전종길;이동건;백이;김형권
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.49-56
    • /
    • 2015
  • In this study a hybrid heating system based on geothermal source and solar heat was developed in order to save energy for greenhouse heating and its field performance was evaluated. Developed system are composed of following parts: water tank, heat exchanger, heat pump, fan coil unit and heat storage unit. The working performance test was carried out in a greenhouse cultivating oriental orchids being managed by $23^{\circ}C$. Field performance test results showed that average heating coefficient of performance ($COP_h$) was 3.4 for the period from mid-January to mid-March 2013. Heating coefficient of performance ($COP_h$) of developed hybrid heat pump system was more sensitive to water tank temperature than outside air temperature. This study showed that developed hybrid heat pump system has a potential to save the heating costs up to 91% compared to conventional agricultural oil heaters.