• Title/Summary/Keyword: Performance limit

Search Result 2,454, Processing Time 0.025 seconds

A Unified Framework for Overcoming Motion Constraints of Robots Using Task Transition Algorithm (작업 전이 알고리즘 기반 로봇 동작 제한 극복 프레임워크)

  • Jang, Keunwoo;Kim, Sanghyun;Park, Suhan;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.129-141
    • /
    • 2018
  • This paper proposes a unified framework that overcomes four motion constraints including joint limit, kinematic singularity, algorithmic singularity and obstacles. The proposed framework is based on our previous works which can insert or remove tasks continuously using activation parameters and be applied to avoid joint limit and singularity. Additionally, we develop a method for avoiding obstacles and combine it into the framework to consider four motion constraints simultaneously. The performance of the proposed framework was demonstrated by simulation tests with considering four motion constraints. Results of the simulations verified the framework's effectiveness near joint limit, kinematic singularity, algorithmic singularity and obstacles. We also analyzed sensitivity of our algorithm near singularity when using closed loop inverse kinematics depending on magnitude of gain matrix.

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.

Probabilistic Strength at Serviceability Limit State for Normal and SBHS Slender Stiffened Plates Under Uniaxial Compression

  • Rahman, Mahmudur;Okui, Yoshiaki;Anwer, Muhammad Atif
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1397-1409
    • /
    • 2018
  • Stiffened plates with high slenderness parameters show large out-of-plane deflections, due to elastic buckling, which may occur before the plates reach their ultimate strength. From a serviceability point of view, restriction of out-of-plane deflections exceeding the fabrication tolerance is of primary importance. Compressive strength at the serviceability limit state (SLS) for slender stiffened plates under uniaxial stress was investigated through nonlinear elasto-plastic finite element analysis, considering both geometric and material nonlinearity. Both normal and high-performance steel were considered in the study. The SLS was defined based on a deflection limit and an elastic buckling strength. Probabilistic distributions of the SLS strengths were obtained through Monte Carlo simulations, in association with the response surface method. On the basis of the obtained statistical distributions, partial safety factors were proposed for SLS. Comparisons with the ultimate strength of different design codes e.g. Japanese Code, AASHTO, and Canadian Code indicate that AASHTO and Canadian Code provide significantly conservative design, while Japanese Code matches well with a 5% non-exceedance probability for compressive strength at SLS.

Seismic Fragility Analysis of Container Crane Considering Far-Fault and Near-Fault Ground Motion Characteristics (원거리와 근거리 지진파의 특성을 고려한 항만 컨테이너 크레인의 지진취약도 분석)

  • Park, Ju-Hyun;Min, Jiyoung;Lee, Jong-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The recent increase in earthquake activities has highlighted the importance of seismic performance evaluation for civil infrastructures. In particular, the container crane essential to maintaining the national logistics system with port operation requires an exact evaluation of its seismic response. Thus, this study aims to assess the seismic vulnerability of container cranes considering their seismic characteristics. The seismic response of the container crane should account for the structural members' yielding and buckling, as well as the crane wheel's uplifting derailment in operation. The crane's yielding and buckling limit states were defined using the stress of crane members based on the load and displacement curve obtained from nonlinear static analysis. The derailment limit state was based on the height of the rail, and nonlinear dynamic analysis was performed to obtain the seismic fragility curves considering defined limit states and seismic characteristics. The yield and derailment probabilities of the crane in the near-fault ground motion were approximately 1.5 to 4.7 and 2.8 to 6.8 times higher, respectively, than those in the far-fault ground motion.

A Study on the Development of a Stability Chart for Yield Seismic Coefficient of Soil Slope Using Limit Analysis (한계해석을 이용한 토사면의 항복지진계수 산정도표 제안 연구)

  • Choi, Sang-Ho;Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.47-57
    • /
    • 2010
  • Yield seismic coefficient plays an important role in the estimation of permanent displacement of a soil slope subjected to earthquake using Newmark's sliding block theory. However, yield seismic coefficients currently used in practices are not mechanically rigorous since most of them are estimated using limit equilibrium methods considering equilibrium condition only. Therefore, estimation of permanent displacement of a soil slope based on existing yield seismic coefficient may cause problems. Limit analysis estimating the range of mechanically rigorous solution is thought to be effective in evaluating the validity of existing yield seismic coefficient. In this study, a simple stability chart for yield seismic coefficient useful in practices is proposed by considering various slope conditions including stability number, slope inclination, strength parameters, etc.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

Design for Distributed Simulator using Wired and Wireless Devices (유무선 단말기를 이용한 분산 시뮬레이터 설계)

  • Jo, Soo-Hyun;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.41-48
    • /
    • 2011
  • Wireless communication technology developed, portable wireless devices based on wireless network including the smartphone rapidly developed, and products with functions similar to highly efficient computer are being launched. Therefore, active studies to enable performance of works, which were previously held in computers, on portable wireless terminal are being held. Until now, simulation was undertaken using computers which satisfy high performance computing resource. Such contains a problem that it cannot break away the limit of space. Portable wireless terminal has the merit that it can break away from the limit of space by using wireless network in comparison to wired environment. In this paper, it suggests a simulator based on wireless devices for distributed simulation. For such purpose, the performance time of simulation will be compared in regards to the case of performing nodes control simulation in a single highly efficient computer and the case of performing distributed simulation in many wired and wireless network environments. Through the comparison, the possibility for utility of portable wireless terminal as the object of distributed simulation will be verified, and it will be presented that simulation can be performed in a shorter time by performing distributed simulation under various wired and wireless network environments away from the limit of space.

Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network

  • Mohamed Noureldin;Masoum M. Gharagoz;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.167-184
    • /
    • 2023
  • In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.

A Study on the Static and Dynamic Characteristics of Raised Girder Bridges (양각 거더교의 정적·동적특성에 관한 연구)

  • Ji-Yeon Lee;Sung Kim;Sung-Jin Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.851-858
    • /
    • 2023
  • Purpose: A study was conducted to ensure the structural safety of a raised girder bridge with improved cross-sectional efficiency compared to the conventional PSC girder. For this purpose, the cross-sectional specifications such as girder length, height, and width were determined, the arrangement of the tendons was designed, and the practical performance of the raised girder under static and dynamic loads was verified. Method: The static performance experiment examined the serviceability limit state by measuring behavioral responses such as deflection and cracking to primary and secondary static loads. In addition, the dynamic load loading experiment measured the acceleration and displacement behavior response over time to calculate the natural frequency and damping ratio to examine the usability limit state. Result: As a result of the static performance test, the deflection value based on the maximum applied load showed stable behavior, and the crack width measured at the maximum applied load level was very small, satisfying the serviceability limit state. In addition, a natural frequency exceeding the natural frequency calculated during the design of the dynamic loading experiment was found, and a damping ratio that satisfies the current regulations was found to be secured.

Study on seismic performance of exterior reinforced concrete beam-column joint under variable loading speeds or axial forces

  • Guoxi Fan;Wantong Xiang;Debin Wang;Zichen Dou;Xiaocheng Tang
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • In order to get a better understanding of seismic performance of exterior beam-column joint, reciprocating loading tests with variable loading speeds or axial forces were carried out. The main findings indicate that only few cracks exist on the surface of the joint core area, while the plastic hinge region at the beam end is seriously damaged. The damage of the specimen is more serious with the increase of the upper limit of variable axial force. The deflection ductility coefficient of specimen decreases to various degrees after the upper limit of variable axial force increases. In addition, the higher the loading speed is, the lower the deflection ductility coefficient of the specimen is. The stiffness of the specimen decreases as the upper limit of variable axial force or the loading speed increase. Compared to the influence of variable axial force, the influence of the loading speed on the stiffness degradation of the specimen is more obvious. The cumulative energy dissipation and the equivalent viscous damping coefficient of specimen decrease with the increase of loading speed. The influence of variable axial force on the energy dissipation of specimen varies under different loading speeds. Based on the truss model, the biaxial stress criterion, the Rankine criterion, the Kent-Scott-Park model, the equivalent theorem of shearing stress, the softened strut-and-tie model, the controlled slip theory and the proposed equations, a calculation method for the shear capacity is proposed with satisfactory prediction results.