• Title/Summary/Keyword: Performance evaluation of disaster prevention

Search Result 92, Processing Time 0.018 seconds

The study on performance evaluation of heat resistance and smoke control system using air-curtain system in tunnel (터널용 에어커튼 시스템의 내열 및 제연 성능 평가 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Yang-Kyun;Kim, Hwi-Seong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.743-755
    • /
    • 2018
  • Tunnel is a semi-closed structure similar to underground space where the smoke generated from fire fills the space fast while escaping from the space slow. Because of such characteristics, when the fire breaks out by traffic accident, the vehicles are jammed making it difficult for the people to evacuate from the scene as well as for the fire engine to gain access to the scene. For such reasons, tunnels are globally categorized into some disaster classes for differentiated facilities and operation approaches. In Korea, less than a 1 km-long tunnel accounts for 80.0% and such a short tunnel which is categorized into Class III is not required to have smoke control system. In this study, a full-scale fire test was conducted in a bid to apply air curtain system using heat-resistant sirocco fan to a less than 1 km-long tunnel. To that end, heat resistance test to verify the normal operation at $250^{\circ}C$ for 60 minutes was conducted. Consequently, despite of rapid rising-temperature and increasing-carbon dioxide inside the air curtain (direction of fire in tunnel), initial condition was found to have been sustained outside the air curtain (opposite direction of fire in tunnel).

Analysis of RSET According to Exit Installation Standards for the Exterior of a Food Manufacturing Plant Building (식품공장 건축물 바깥쪽으로의 출구 설치기준에 따른 RSET 분석)

  • Park, Ha-Soung;Lee, Jae-Wook;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.201-208
    • /
    • 2024
  • In this study, we investigated whether the evacuation time according to the exit installation standards specified in the building code during a food factory fire is compatible with the evacuation time based on the performance-based design specified by the fire department, in order to determine if evacuation safety is ensured. We used the Pathfinder program to confirm the evacuation time, and experimented with three scenarios for exit installation standards towards the outside of the building: 60m, 80m, and 100m. The target building in the experiment corresponded to the building code's exit installation standard of 100m from each dwelling. The experimental results showed tt in the cases of 80m and 100m, ASET exceeded RSET, indicating tt evacuation safety was not ensured, while in the case of 60m, evacuation safety was maintained. Through this study, it was confirmed tt even when the exit installation standards towards the outside of the building are met, evacuation safety may not be guaranteed.