• Title/Summary/Keyword: Performance curve

Search Result 2,292, Processing Time 0.023 seconds

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

Preliminary Report of the $1998{\sim}1999$ Patterns of Care Study of Radiation Therapy for Esophageal Cancer in Korea (식도암 방사선 치료에 대한 Patterns of Care Study ($1998{\sim}1999$)의 예비적 결과 분석)

  • Hur, Won-Joo;Choi, Young-Min;Lee, Hyung-Sik;Kim, Jeung-Kee;Kim, Il-Han;Lee, Ho-Jun;Lee, Kyu-Chan;Kim, Jung-Soo;Chun, Mi-Son;Kim, Jin-Hee;Ahn, Yong-Chan;Kim, Sang-Gi;Kim, Bo-Kyung
    • Radiation Oncology Journal
    • /
    • v.25 no.2
    • /
    • pp.79-92
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: For the first time, a nationwide survey in the Republic of Korea was conducted to determine the basic parameters for the treatment of esophageal cancer and to offer a solid cooperative system for the Korean Pattern of Care Study database. $\underline{Materials\;and\;Methods}$: During $1998{\sim}1999$, biopsy-confirmed 246 esophageal cancer patients that received radiotherapy were enrolled from 23 different institutions in South Korea. Random sampling was based on power allocation method. Patient parameters and specific information regarding tumor characteristics and treatment methods were collected and registered through the web based PCS system. The data was analyzed by the use of the Chi-squared test. $\underline{Results}$: The median age of the collected patients was 62 years. The male to female ratio was about 91 to 9 with an absolute male predominance. The performance status ranged from ECOG 0 to 1 in 82.5% of the patients. Diagnostic procedures included an esophagogram (228 patients, 92.7%), endoscopy (226 patients, 91.9%), and a chest CT scan (238 patients, 96.7%). Squamous cell carcinoma was diagnosed in 96.3% of the patients; mid-thoracic esophageal cancer was most prevalent (110 patients, 44.7%) and 135 patients presented with clinical stage III disease. Fifty seven patients received radiotherapy alone and 37 patients received surgery with adjuvant postoperative radiotherapy. Half of the patients (123 patients) received chemotherapy together with RT and 70 patients (56.9%) received it as concurrent chemoradiotherapy. The most frequently used chemotherapeutic agent was a combination of cisplatin and 5-FU. Most patients received radiotherapy either with 6 MV (116 patients, 47.2%) or with 10 MV photons (87 patients, 35.4%). Radiotherapy was delivered through a conventional AP-PA field for 206 patients (83.7%) without using a CT plan and the median delivered dose was 3,600 cGy. The median total dose of postoperative radiotherapy was 5,040 cGy while for the non-operative patients the median total dose was 5,970 cGy. Thirty-four patients received intraluminal brachytherapy with high dose rate Iridium-192. Brachytherapy was delivered with a median dose of 300 cGy in each fraction and was typically delivered $3{\sim}4\;times$. The most frequently encountered complication during the radiotherapy treatment was esophagitis in 155 patients (63.0%). $\underline{Conclusion}$: For the evaluation and treatment of esophageal cancer patients at radiation facilities in Korea, this study will provide guidelines and benchmark data for the solid cooperative systems of the Korean PCS. Although some differences were noted between institutions, there was no major difference in the treatment modalities and RT techniques.