• Title/Summary/Keyword: Performance accuracy

Search Result 8,121, Processing Time 0.033 seconds

Coronary Computed Tomography Angiography for the Diagnosis of Vasospastic Angina: Comparison with Invasive Coronary Angiography and Ergonovine Provocation Test

  • Jiesuck Park;Hyung-Kwan Kim;Eun-Ah Park;Jun-Bean Park;Seung-Pyo Lee;Whal Lee;Yong-Jin Kim;Dae-Won Sohn
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.719-728
    • /
    • 2019
  • Objective: To investigate the diagnostic validity of coronary computed tomography angiography (cCTA) in vasospastic angina (VA) and factors associated with discrepant results between invasive coronary angiography with the ergonovine provocation test (iCAG-EPT) and cCTA. Materials and Methods: Of the 1397 patients diagnosed with VA from 2006 to 2016, 33 patients (75 lesions) with available cCTA data from within 6 months before iCAG-EPT were included. The severity of spasm (% diameter stenosis [%DS]) on iCAGEPT and cCTA was assessed, and the difference in %DS (Δ%DS) was calculated. Δ%DS was compared after classifying the lesions according to pre-cCTA-administered sublingual nitroglycerin (SL-NG) or beta-blockers. The lesions were further categorized with %DS ≥ 50% on iCAG-EPT or cCTA defined as a significant spasm, and the diagnostic performance of cCTA on identifying significant spasm relative to iCAG-EPT was assessed. Results: Compared to lesions without SL-NG treatment, those with SL-NG treatment showed a higher Δ%DS (39.2% vs. 22.1%, p = 0.002). However, there was no difference in Δ%DS with or without beta-blocker treatment (35.1% vs. 32.6%, p = 0.643). The significant difference in Δ%DS associated with SL-NG was more prominent in patients who were aged < 60 years, were male, had body mass index < 25 kg/m2, and had no history of hypertension, diabetes, or dyslipidemia. Based on iCAG-EPT as the reference, the per-lesion-based sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of cCTA for VA diagnosis were 7.5%, 94.0%, 60.0%, 47.1%, and 48.0%, respectively. Conclusion: For patients with clinically suspected VA, confirmation with iCAG-EPT needs to be considered without completely excluding the diagnosis of VA simply based on cCTA results, although further prospective studies are required for confirmation.

Comparison of Monoexponential, Biexponential, Stretched-Exponential, and Kurtosis Models of Diffusion-Weighted Imaging in Differentiation of Renal Solid Masses

  • Jianjian Zhang;Shiteng Suo;Guiqin Liu;Shan Zhang;Zizhou Zhao;Jianrong Xu;Guangyu Wu
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.791-800
    • /
    • 2019
  • Objective: To compare various models of diffusion-weighted imaging including monoexponential apparent diffusion coefficient (ADC), biexponential (fast diffusion coefficient [Df], slow diffusion coefficient [Ds], and fraction of fast diffusion), stretched-exponential (distributed diffusion coefficient and anomalous exponent term [α]), and kurtosis (mean diffusivity and mean kurtosis [MK]) models in the differentiation of renal solid masses. Materials and Methods: A total of 81 patients (56 men and 25 women; mean age, 57 years; age range, 30-69 years) with 18 benign and 63 malignant lesions were imaged using 3T diffusion-weighted MRI. Diffusion model selection was investigated in each lesion using the Akaike information criteria. Mann-Whitney U test and receiver operating characteristic (ROC) analysis were used for statistical evaluations. Results: Goodness-of-fit analysis showed that the stretched-exponential model had the highest voxel percentages in benign and malignant lesions (90.7% and 51.4%, respectively). ADC, Ds, and MK showed significant differences between benign and malignant lesions (p < 0.05) and between low- and high-grade clear cell renal cell carcinoma (ccRCC) (p < 0.05). α was significantly lower in the benign group than in the malignant group (p < 0.05). All diffusion measures showed significant differences between ccRCC and non-ccRCC (p < 0.05) except Df and α (p = 0.143 and 0.112, respectively). α showed the highest diagnostic accuracy in differentiating benign and malignant lesions with an area under the ROC curve of 0.923, but none of the parameters from these advanced models revealed significantly better performance over ADC in discriminating subtypes or grades of renal cell carcinoma (RCC) (p > 0.05). Conclusion: Compared with conventional diffusion parameters, α may provide additional information for differentiating benign and malignant renal masses, while ADC remains the most valuable parameter for differentiation of RCC subtypes and for ccRCC grading.

Retrospective Electrocardiography-Gated Real-Time Cardiac Cine MRI at 3T: Comparison with Conventional Segmented Cine MRI

  • Chen Cui;Gang Yin;Minjie Lu;Xiuyu Chen;Sainan Cheng;Lu Li;Weipeng Yan;Yanyan Song;Sanjay Prasad;Yan Zhang;Shihua Zhao
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.114-125
    • /
    • 2019
  • Objective: Segmented cardiac cine magnetic resonance imaging (MRI) is the gold standard for cardiac ventricular volumetric assessment. In patients with difficulty in breath-holding or arrhythmia, this technique may generate images with inadequate quality for diagnosis. Real-time cardiac cine MRI has been developed to address this limitation. We aimed to assess the performance of retrospective electrocardiography-gated real-time cine MRI at 3T for left ventricular (LV) volume and mass measurement. Materials and Methods: Fifty-one patients were consecutively enrolled. A series of short-axis cine images covering the entire left ventricle using both segmented and real-time balanced steady-state free precession cardiac cine MRI were obtained. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and LV mass were measured. The agreement and correlation of the parameters were assessed. Additionally, image quality was evaluated using European CMR Registry (Euro-CMR) score and structure visibility rating. Results: In patients without difficulty in breath-holding or arrhythmia, no significant difference was found in Euro-CMR score between the two techniques (0.3 ± 0.7 vs. 0.3 ± 0.5, p > 0.05). Good agreements and correlations were found between the techniques for measuring EDV, ESV, EF, SV, and LV mass. In patients with difficulty in breath-holding or arrhythmia, segmented cine MRI had a significant higher Euro-CMR score (2.3 ± 1.2 vs. 0.4 ± 0.5, p < 0.001). Conclusion: Real-time cine MRI at 3T allowed the assessment of LV volume with high accuracy and showed a significantly better image quality compared to that of segmented cine MRI in patients with difficulty in breath-holding and arrhythmia.

Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility

  • Qing-Qing Zhou;Jiashuo Wang;Wen Tang;Zhang-Chun Hu;Zi-Yi Xia;Xue-Song Li;Rongguo Zhang;Xindao Yin;Bing Zhang;Hong Zhang
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.869-879
    • /
    • 2020
  • Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and classify rib fractures, and output structured reports from computed tomography (CT) images. Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured report and that of experienced radiologists. Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the radiologists was reduced by 73.9 seconds. Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, reducing diagnosis time and radiologists' workload.

Characteristics of source localization with horizontal line array using frequency-difference autoproduct in the East Sea environment (동해 환경에서 차주파수 곱 및 수평선배열을 이용한 음원 위치추정 특성)

  • Joung-Soo Park;Jungyong Park;Su-Uk Son;Ho Seuk Bae;Keun-Wha Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.29-38
    • /
    • 2024
  • The Matched Field Processing (MFP) is an estimation method for a source range and depth based on the prediction of sound propagation. However, as the frequency increases, the prediction inaccuracy of sound propagation increases, making it difficult to estimate the source position. Recently proposed, the Frequency-Difference Matched Field Processing (FD-MFP) is known to be robust even if there is a mismatch by applying a frequency-difference autoproduct extracted from the auto-correlation of a high frequency signal. In this paper, in order to evaluate the performance of the FD-MFP using a horizontal line array, simulations were conducted in the environment of the East Sea of Korea. In the area of Bottom Bounce (BB) and Convergence Zone (CZ) where detection of a sound source is possible at a long range, and the results of localization were analyzed. According to the the FD-MFP simulations of horizontal line array, the accuracy of localization is similar or degraded compared to the conventional MFP due to diffracted field and mismatch of sound speed. There was no clear result from the simulations conforming that the FD-MFP was more robust to mismatch than the conventional MFP.

Low-cost Prosthetic Hand Model using Machine Learning and 3D Printing (머신러닝과 3D 프린팅을 이용한 저비용 인공의수 모형)

  • Donguk Shin;Hojun Yeom;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2024
  • Patients with amputations of both hands need prosthetic hands that serve both cosmetic and functional purposes, and research on prosthetic hands using electromyography of remaining muscles is active, but there is still the problem of high cost. In this study, an artificial prosthetic hand was manufactured and its performance was evaluated using low-cost parts and software such as a surface electromyography sensor, machine learning software Edge Impulse, Arduino Nano 33 BLE, and 3D printing. Using signals acquired with surface electromyography sensors and subjected to digital signal processing through Edge Impulse, the flexing movement signals of each finger were transmitted to the fingers of the prosthetic hand model through training to determine the type of finger movement using machine learning. When the digital signal processing conditions were set to a notch filter of 60 Hz, a bandpass filter of 10-300 Hz, and a sampling frequency of 1,000 Hz, the accuracy of machine learning was the highest at 82.1%. The possibility of being confused between each finger flexion movement was highest for the ring finger, with a 44.7% chance of being confused with the movement of the index finger. More research is needed to successfully develop a low-cost prosthetic hand.

Identifying Personal Values Influencing the Lifestyle of Older Adults: Insights From Relative Importance Analysis Using Machine Learning (중고령 노인의 개인적 가치에 따른 라이프스타일 분류: 머신러닝을 활용한 상대적 중요도 분석 )

  • Lim, Seungju;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.13 no.2
    • /
    • pp.69-84
    • /
    • 2024
  • Objective : This study aimed to categorize the lifestyles of older adults into two types - healthy and unhealthy, and use machine learning to identify the personal values that influence these lifestyles. Methods : This cross-sectional study targeting middle-aged and older adults (55 years and above) living in local communities in South Korea. Data were collected from 300 participants through online surveys. Lifestyle types were dichotomized by the Yonsei Lifestyle Profile (YLP)-Active, Balanced, Connected, and Diverse (ABCD) responses using latent profile analysis. Personal value information was collected using YLP-Values (YLP-V) and analyzed using machine learning to identify the relative importance of personal values on lifestyle types. Results : The lifestyle of older adults was categorized into healthy (48.87%) and unhealthy (51.13%). These two types showed the most significant difference in social relationship characteristics. Among the machine learning models used in this study, the support vector machine showed the highest classification performance, achieving 96% accuracy and 95% area under the receiver operating characteristic (ROC) curve. The model indicated that individuals who prioritized a healthy diet, sought health information, and engaged in hobbies or cultural activities were more likely to have a healthy lifestyle. Conclusion : This study suggests the need to encourage the expansion of social networks among older adults. Furthermore, it highlights the necessity to comprehensively intervene in individuals' perceptions and values that primarily influence lifestyle adherence.

A Semi-Automated Labeling-Based Data Collection Platform for Golf Swing Analysis

  • Hyojun Lee;Soyeong Park;Yebon Kim;Daehoon Son;Yohan Ko;Yun-hwan Lee;Yeong-hun Kwon;Jong-bae Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.11-21
    • /
    • 2024
  • This study explores the use of virtual reality (VR) technology to identify and label key segments of the golf swing. To address the limitations of existing VR devices, we developed a platform to collect kinematic data from various VR devices using the OpenVR SDK (Software Development Kit) and SteamVR, and developed a semi-automated labeling technique to identify and label temporal changes in kinematic behavior through LSTM (Long Short-Term Memory)-based time series data analysis. The experiment consisted of 80 participants, 20 from each of the following age groups: teenage, young-adult, middle-aged, and elderly, collecting data from five swings each to build a total of 400 kinematic datasets. The proposed technique achieved consistently high accuracy (≥0.94) and F1 Score (≥0.95) across all age groups for the seven main phases of the golf swing. This work aims to lay the groundwork for segmenting exercise data and precisely assessing athletic performance on a segment-by-segment basis, thereby providing personalized feedback to individual users during future education and training.

Korean Food Review Analysis Using Large Language Models: Sentiment Analysis and Multi-Labeling for Food Safety Hazard Detection (대형 언어 모델을 활용한 한국어 식품 리뷰 분석: 감성분석과 다중 라벨링을 통한 식품안전 위해 탐지 연구)

  • Eun-Seon Choi;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.75-88
    • /
    • 2024
  • Recently, there have been cases reported in the news of individuals experiencing symptoms of food poisoning after consuming raw beef purchased from online platforms, or reviews claiming that cherry tomatoes tasted bitter. This suggests the potential for analyzing food reviews on online platforms to detect food hazards, enabling government agencies, food manufacturers, and distributors to manage consumer food safety risks. This study proposes a classification model that uses sentiment analysis and large language models to analyze food reviews and detect negative ones, multi-labeling key food safety hazards (food poisoning, spoilage, chemical odors, foreign objects). The sentiment analysis model effectively minimized the misclassification of negative reviews with a low False Positive rate using a 'funnel' model. The multi-labeling model for food safety hazards showed high performance with both recall and accuracy over 96% when using GPT-4 Turbo compared to GPT-3.5. Government agencies, food manufacturers, and distributors can use the proposed model to monitor consumer reviews in real-time, detect potential food safety issues early, and manage risks. Such a system can protect corporate brand reputation, enhance consumer protection, and ultimately improve consumer health and safety.

Product Evaluation Criteria Extraction through Online Review Analysis: Using LDA and k-Nearest Neighbor Approach (온라인 리뷰 분석을 통한 상품 평가 기준 추출: LDA 및 k-최근접 이웃 접근법을 활용하여)

  • Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.97-117
    • /
    • 2020
  • Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.