• Title/Summary/Keyword: Performance Framework

검색결과 2,620건 처리시간 0.025초

Social Network Analysis on Research Keywords of Child-Occupation Studies (아동의 작업 연구주제어의 사회연결망 분석)

  • Ha, Seong-Kyu;Park, Kang-Hyun
    • Therapeutic Science for Rehabilitation
    • /
    • 제12권4호
    • /
    • pp.39-51
    • /
    • 2023
  • Objective : This study seeks to unveil the intellectual framework of research surrounding children's occupations by utilizing social network analysis of keywords from studies focused on childhood. Methods : From August 2003 to August 2023, we analyzed 3,364 keywords extracted from 270 research articles in the Korean Citation Index with the keyword "Child and Occupation" using the NetMiner program. Results : Research on children's work has increased quantitatively over the past decade. Keywords exhibiting a high degree of centrality in the realm of child occupation research included Task (0.055), Group therapy (0.040), Working memory (0.037), Intervention (0.033), Performance (0.030), Language (0.026), Ability (0.026), Skill (0.024), and Program (0.023). Notably, the weighted terms in the Word Network included Evaluation-Tool (30), School-Student (15), and Activity-Participation (15). The primary keywords from each topic in topic modeling were Activity (0.295), Disability (0.604), Education (0.356), Skill (0.478), School (0.317), Function (0.462), Disorder (0.324), Language (0.310), Comprehension (0.412), and Training (0.511). Conclusion : This study describes the trends in the domestic field of pediatric occupational research. These efforts provided valuable insights into pediatric occupational therapy in South Korea.

Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network (CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식)

  • Guiyoung Son;Soonil Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • 제13권6호
    • /
    • pp.284-290
    • /
    • 2024
  • Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.

Developing Measurement Items for the Service Quality of Clinical Trials based on the Brady & Cronin Model (Brady & Cronin의 모델에 기반한 임상시험 서비스 질 측정 문항 개발)

  • Go-Eun Lee;Sanghee Kim;Sue Kim;Sang Hui Chu;Jeong-Ho Seok;So Yoon Kim
    • The Journal of KAIRB
    • /
    • 제6권1호
    • /
    • pp.17-31
    • /
    • 2024
  • Purpose: This study aims to develop preliminary items for measuring the perceived service quality of clinical trials among participants and to verify content validity. Methods: This study was designed as a methodological study. A conceptual framework was established based on Brady and Cronin's hierarchical model, and preliminary items were prepared through translation-back-translation, a review of existing instruments, and in-depth interviews with clinical trial participants and clinical research coordinators. The final items were completed through content validity testing by experts and a review of items by clinical trial participants for the prepared preliminary items. Results: Through this study, a set of 58 items across four domains (quality of interaction with researchers, the physical environment, performance procedures, and performance results) and 9 components (information·education·communication, trust, respect for participant preferences, securing facilities and space, accessibility, comfortability, informed consent, coordination of care, subjective understanding of clinical trials) on the service quality of clinical trials were completed. The scale content validity index of all preliminary items was 0.96, meeting the recommended standards. The individual-item content validity index also meets the recommended criteria for most items, excluding four items. Conclusion: This study holds significance in developing items to measure the quality of clinical trial execution from the perspective of participants. By verifying the reliability and validity of these items through subsequent research, it is expected that they can be utilized as a valuable instrument to devise strategies for improving the quality of clinical trials.

  • PDF

Deep Learning in Thyroid Ultrasonography to Predict Tumor Recurrence in Thyroid Cancers (인공지능 딥러닝을 이용한 갑상선 초음파에서의 갑상선암의 재발 예측)

  • Jieun Kil;Kwang Gi Kim;Young Jae Kim;Hye Ryoung Koo;Jeong Seon Park
    • Journal of the Korean Society of Radiology
    • /
    • 제81권5호
    • /
    • pp.1164-1174
    • /
    • 2020
  • Purpose To evaluate a deep learning model to predict recurrence of thyroid tumor using preoperative ultrasonography (US). Materials and Methods We included representative images from 229 US-based patients (male:female = 42:187; mean age, 49.6 years) who had been diagnosed with thyroid cancer on preoperative US and subsequently underwent thyroid surgery. After selecting each representative transverse or longitudinal US image, we created a data set from the resulting database of 898 images after augmentation. The Python 2.7.6 and Keras 2.1.5 framework for neural networks were used for deep learning with a convolutional neural network. We compared the clinical and histological features between patients with and without recurrence. The predictive performance of the deep learning model between groups was evaluated using receiver operating characteristic (ROC) analysis, and the area under the ROC curve served as a summary of the prognostic performance of the deep learning model to predict recurrent thyroid cancer. Results Tumor recurrence was noted in 49 (21.4%) among the 229 patients. Tumor size and multifocality varied significantly between the groups with and without recurrence (p < 0.05). The overall mean area under the curve (AUC) value of the deep learning model for prediction of recurrent thyroid cancer was 0.9 ± 0.06. The mean AUC value was 0.87 ± 0.03 in macrocarcinoma and 0.79 ± 0.16 in microcarcinoma. Conclusion A deep learning model for analysis of US images of thyroid cancer showed the possibility of predicting recurrence of thyroid cancer.

A Study on Influence of Foodservice Managers' Emotional Intelligence on Job Attitude and Organizational Performance (급식관리자의 개인적 감성지능이 직무태도 및 조직성과에 미치는 영향)

  • Jung, Hyun-Young;Kim, Hyun-Ah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제39권12호
    • /
    • pp.1880-1892
    • /
    • 2010
  • The purposes of this study were to: a) provide evidence concerning the effects of emotional intelligence on job outcomes, b) examine the impacts of emotional intelligence on employee-related variables such as 'job satisfaction', 'organizational commitment', 'organizational performance', and 'turnover intention' c) identify the conceptual framework underlying emotional intelligence. A survey was conducted to collect data from foodservice managers (N=231). Statistical analyses were completed using SPSS Win (16.0) for descriptive analysis, reliability analysis, factor analysis, t-test, correlation analysis, cluster analysis and AMOS (16.0) for confirmatory factor analysis and structural equation modeling. The concept of emotional intelligence (EI) has been on the radar screens of many leaders and managers over the last several decades. The emotional intelligence is generally accepted to be a combination of emotional and interpersonal competencies that influence behavior, thinking and interaction with others. The main results of this study were as follows. The four EI (Emotional Intelligence) dimensions correlated significantly with age. The means of job satisfaction score were above the midpoint (3.04 point) scale. The organizational commitment score was above the midpoint (3.41 point) scale and was higher at 'loyalty' factor than 'commitment' factor. The means of organizational performance score were above the midpoint (3.34) scale. The correlations among the four EI (emotional intelligence) factors were significant with job satisfaction; organizational commitment, organizational performance and turnover intention. The test of hypothesis using structural equation modeling found that emotional intelligence produced positive effects on job attitude and job performance. Emotional intelligence enhanced organizational commitment, and in turn, managers' attitude produced positive effects on organizational performance; emotional intelligence also had a direct impact on organizational performance. This study has identified the effect of emotional intelligence on organizational performance and attitudes toward one's job.

Identifying Antecedents of Service Innovation: Based on Service-Dominant Logic and Resource-Advantage Theory (서비스 혁신의 선행요인에 관한 연구: 서비스 지배적 논리와 자원 우위 이론을 중심으로)

  • Ryu, Hyun-Sun;Han, Jin Young
    • Information Systems Review
    • /
    • 제18권2호
    • /
    • pp.79-106
    • /
    • 2016
  • Service innovation is one means of gaining an advantage in a highly competitive environment. Although numerous studies have stressed the importance of service innovation, traditional good-dominant logic is still used in service innovation literature. Furthermore, few studies have been conducted on the link between service innovation and its antecedents in terms of service-oriented approach. To fill the gap, this article theoretically and empirically examines service innovation and its antecedents and consequences. Based on service-dominant logic and resource advantage theory, the current study aims to understand the effect of antecedents on service innovation as well as to identify the effect of service innovation on firm performance (i.e., non-financial and financial performance). Three service innovation activities, namely service creation-focused innovation, service delivery-focused innovation, and customer interaction-focused innovation, and four antecedents of service innovation, including human resource management capability, collaboration capability, marketing capability, and information technology capability, are identified based on Den Hertog (2000)'s service innovation framework. By using the empirical data collected from 189 service firms in Korea, this study explores the causal relationship among antecedents, service innovation and firm performance. Findings indicate that human resource management and marketing capabilities influence the three types of service innovation, whereas collaboration and information technology capabilities have a significant effect on both service creation-focused innovation and service delivery-focused innovation. In particular, human resource management capability is strongly related to customer interaction-focused innovation. The three types of service innovation have a positive influence on non-financial performance, whereas service delivery-focused innovation and customer interaction-focused innovation positively influence financial performance. These results support the crucial effects of antecedents, such as human resource management, collaboration, marketing and information technology capabilities, on service innovation.

Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries (분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천)

  • Jang, Yeongjin;Won, Jongkwan;Lee, Chaerok
    • Journal of Intelligence and Information Systems
    • /
    • 제28권1호
    • /
    • pp.69-88
    • /
    • 2022
  • One of the characteristics of South Korea's economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model. We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products. Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model. Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented. There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values. Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.

An Analysis of the Roles of Experience in Information System Continuance (정보시스템의 지속적 사용에서 경험의 역할에 대한 분석)

  • Lee, Woong-Kyu
    • Asia pacific journal of information systems
    • /
    • 제21권4호
    • /
    • pp.45-62
    • /
    • 2011
  • The notion of information systems (IS) continuance has recently emerged as one of the most important research issues in the field of IS. A great deal of research has been conducted thus far on the basis of theories adapted from various disciplines including consumer behaviors and social psychology, in addition to theories regarding information technology (IT) acceptance. This previous body of knowledge provides a robust research framework that can already account for the determination of IS continuance; however, this research points to other, thus-far-unelucidated determinant factors such as habit, which were not included in traditional IT acceptance frameworks, and also re-emphasizes the importance of emotion-related constructs such as satisfaction in addition to conscious intention with rational beliefs such as usefulness. Experiences should also be considered one of the most important factors determining the characteristics of information system (IS) continuance and the features distinct from those determining IS acceptance, because more experienced users may have more opportunities for IS use, which would allow them more frequent use than would be available to less experienced or non-experienced users. Interestingly, experience has dual features that may contradictorily influence IS use. On one hand, attitudes predicated on direct experience have been shown to predict behavior better than attitudes from indirect experience or without experience; as more information is available, direct experience may render IS use a more salient behavior, and may also make IS use more accessible via memory. Therefore, experience may serve to intensify the relationship between IS use and conscious intention with evaluations, On the other hand, experience may culminate in the formation of habits: greater experience may also imply more frequent performance of the behavior, which may lead to the formation of habits, Hence, like experience, users' activation of an IS may be more dependent on habit-that is, unconscious automatic use without deliberation regarding the IS-and less dependent on conscious intentions, Furthermore, experiences can provide basic information necessary for satisfaction with the use of a specific IS, thus spurring the formation of both conscious intentions and unconscious habits, Whereas IT adoption Is a one-time decision, IS continuance may be a series of users' decisions and evaluations based on satisfaction with IS use. Moreover. habits also cannot be formed without satisfaction, even when a behavior is carried out repeatedly. Thus, experiences also play a critical role in satisfaction, as satisfaction is the consequence of direct experiences of actual behaviors. In particular, emotional experiences such as enjoyment can become as influential on IS use as are utilitarian experiences such as usefulness; this is especially true in light of the modern increase in membership-based hedonic systems - including online games, web-based social network services (SNS), blogs, and portals-all of which attempt to provide users with self-fulfilling value. Therefore, in order to understand more clearly the role of experiences in IS continuance, analysis must be conducted under a research framework that includes intentions, habits, and satisfaction, as experience may not only have duration-based moderating effects on the relationship between both intention and habit and the activation of IS use, but may also have content-based positive effects on satisfaction. This is consistent with the basic assumptions regarding the determining factors in IS continuance as suggested by Oritz de Guinea and Markus: consciousness, emotion, and habit. The principal objective of this study was to explore and assess the effects of experiences in IS continuance, with special consideration given to conscious intentions and unconscious habits, as well as satisfaction. IN service of this goal, along with a review of the relevant literature regarding the effects of experiences and habit on continuous IS use, this study suggested a research model that represents the roles of experience: its moderating role in the relationships of IS continuance with both conscious intention and unconscious habit, and its antecedent role in the development of satisfaction. For the validation of this research model. Korean university student users of 'Cyworld', one of the most influential social network services in South Korea, were surveyed, and the data were analyzed via partial least square (PLS) analysis to assess the implications of this study. In result most hypotheses in our research model were statistically supported with the exception of one. Although one hypothesis was not supported, the study's findings provide us with some important implications. First the role of experience in IS continuance differs from its role in IS acceptance. Second, the use of IS was explained by the dynamic balance between habit and intention. Third, the importance of satisfaction was confirmed from the perspective of IS continuance with experience.

Technical Standards and Safety Review of the Low and Intermediate Level Radioactive Waste Disposal Facility (중.저준위 방사성폐기물 처분시설에 대한 기술기준 및 안전심사)

  • Cheong, Jae-Hak;Lee, Kwan-Hee;Lee, Yun-Keun;Jeong, Chan-Woo;Rho, Byung-Hwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제6권4호
    • /
    • pp.357-368
    • /
    • 2008
  • On July 31, 2008, the Government issued the construction and operation permit for the first low and intermediate level radioactive waste disposal facility in the Republic of Korea. In this paper, the fundamental regulatory framework, regulatory requirements and technical standards of the disposal facility are introduced, and the phased review process adopted for evaluation of the safety of the facility is briefly described. The Atomic Energy Act sets forth a stepwise regulatory framework for the whole life-cycle of the disposal facility such as siting, design, construction, operation, closure and institutional control. More detailed regulatory requirements and technical standards are stipulated in the subsequent regulations of the Atomic Energy Act and a series of Notices issued by the Ministry of Eduction, Science and Technology. The Korea Institute of Nuclear Safety, as entrusted by the Ministry under the Atomic Energy Act, conducted safety review on the disposal facility, and evaluated the compliance with relevant criteria in all technical elements(i.e. siting and structural safety, radiological environmental impact, operational safety, systems and components, quality assurance, and total systematic performance assessment, etc.). The overall safety review process can be phased into inception phase, initial review phase, main review phase and completion phase. The review results were reported to and deliberated by the five Sub-committees of the Special Committee on Nuclear Safety, and then reported to the Ministry. The Ministry issued the construction and operation permit of the disposal facility through the deliberation of the review results by the Nuclear Safety Commission. Hereafter, the safety of the repository will be reassured by a series of subsequent regulatory inspections and reviews under the Atomic Energy Act. In addition, the licensee's continuous implementation of the "Safety Promotion Plan" may also enhance the long-term safety of the repository and contribute to build-up the confidence of the safety case.

  • PDF

Ontology-based Course Mentoring System (온톨로지 기반의 수강지도 시스템)

  • Oh, Kyeong-Jin;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • 제20권2호
    • /
    • pp.149-162
    • /
    • 2014
  • Course guidance is a mentoring process which is performed before students register for coming classes. The course guidance plays a very important role to students in checking degree audits of students and mentoring classes which will be taken in coming semester. Also, it is intimately involved with a graduation assessment or a completion of ABEEK certification. Currently, course guidance is manually performed by some advisers at most of universities in Korea because they have no electronic systems for the course guidance. By the lack of the systems, the advisers should analyze each degree audit of students and curriculum information of their own departments. This process often causes the human error during the course guidance process due to the complexity of the process. The electronic system thus is essential to avoid the human error for the course guidance. If the relation data model-based system is applied to the mentoring process, then the problems in manual way can be solved. However, the relational data model-based systems have some limitations. Curriculums of a department and certification systems can be changed depending on a new policy of a university or surrounding environments. If the curriculums and the systems are changed, a scheme of the existing system should be changed in accordance with the variations. It is also not sufficient to provide semantic search due to the difficulty of extracting semantic relationships between subjects. In this paper, we model a course mentoring ontology based on the analysis of a curriculum of computer science department, a structure of degree audit, and ABEEK certification. Ontology-based course guidance system is also proposed to overcome the limitation of the existing methods and to provide the effectiveness of course mentoring process for both of advisors and students. In the proposed system, all data of the system consists of ontology instances. To create ontology instances, ontology population module is developed by using JENA framework which is for building semantic web and linked data applications. In the ontology population module, the mapping rules to connect parts of degree audit to certain parts of course mentoring ontology are designed. All ontology instances are generated based on degree audits of students who participate in course mentoring test. The generated instances are saved to JENA TDB as a triple repository after an inference process using JENA inference engine. A user interface for course guidance is implemented by using Java and JENA framework. Once a advisor or a student input student's information such as student name and student number at an information request form in user interface, the proposed system provides mentoring results based on a degree audit of current student and rules to check scores for each part of a curriculum such as special cultural subject, major subject, and MSC subject containing math and basic science. Recall and precision are used to evaluate the performance of the proposed system. The recall is used to check that the proposed system retrieves all relevant subjects. The precision is used to check whether the retrieved subjects are relevant to the mentoring results. An officer of computer science department attends the verification on the results derived from the proposed system. Experimental results using real data of the participating students show that the proposed course guidance system based on course mentoring ontology provides correct course mentoring results to students at all times. Advisors can also reduce their time cost to analyze a degree audit of corresponding student and to calculate each score for the each part. As a result, the proposed system based on ontology techniques solves the difficulty of mentoring methods in manual way and the proposed system derive correct mentoring results as human conduct.