• Title/Summary/Keyword: Performance Diagnostic

Search Result 943, Processing Time 0.023 seconds

Comparison between different cone-beam computed tomography devices in the detection of mechanically simulated peri-implant bone defects

  • Kim, Jun Ho;Abdala-Junior, Reinaldo;Munhoz, Luciana;Cortes, Arthur Rodriguez Gonzalez;Watanabe, Plauto Christopher Aranha;Costa, Claudio;Arita, Emiko Saito
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.133-139
    • /
    • 2020
  • Purpose: This study compared 2 cone-beam computed tomography (CBCT) systems in the detection of mechanically simulated peri-implant buccal bone defects in dry human mandibles. Materials and Methods: Twenty-four implants were placed in 7 dry human mandibles. Peri-implant bone defects were created in the buccal plates of 16 implants using spherical burs. All mandibles were scanned using 2 CBCT systems with their commonly used acquisition protocols: i-CAT Gendex CB-500 (Imaging Sciences, Hatfield, PA, USA; field of view [FOV], 8 cm×8 cm; voxel size, 0.125 mm; 120 kVp; 5 mA; 23 s) and Orthopantomograph OP300 (Intrumentarium, Tuusula, Finland; FOV, 6 cm×8 cm; voxel size, 0.085 mm; 90 kVp; 6.3 mA; 13 s). Two oral and maxillofacial radiologists assessed the CBCT images for the presence of a defect and measured the depth of the bone defects. Diagnostic performance was compared in terms of the area under the curve (AUC), accuracy, sensitivity, specificity, and intraclass correlation coefficient. Results: High intraobserver and interobserver agreement was found (P<0.05). The OP300 showed slightly better diagnostic performance and higher detection rates than the CB-500 (AUC, 0.56±0.03), with a mean accuracy of 75.0%, sensitivity of 81.2%, and specificity of 62.5%. Higher contrast was observed with the CB-500, whereas the OP300 formed more artifacts. Conclusion: Within the limitations of this study, the present results suggest that the choice of CBCT systems with their respective commonly used acquisition protocols does not significantly affect diagnostic performance in detecting and measuring buccal peri-implant bone loss.

IOTA Simple Rules in Differentiating between Benign and Malignant Adnexal Masses by Non-expert Examiners

  • Tinnangwattana, Dangcheewan;Vichak-ururote, Linlada;Tontivuthikul, Paponrad;Charoenratana, Cholaros;Lerthiranwong, Thitikarn;Tongsong, Theera
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3835-3838
    • /
    • 2015
  • Objective: To evaluate the diagnostic performance of IOTA simple rules in predicting malignant adnexal tumors by non-expert examiners. Materials and Methods: Five obstetric/gynecologic residents, who had never performed gynecologic ultrasound examination by themselves before, were trained for IOTA simple rules by an experienced examiner. One trained resident performed ultrasound examinations including IOTA simple rules on 100 women, who were scheduled for surgery due to ovarian masses, within 24 hours of surgery. The gold standard diagnosis was based on pathological or operative findings. The five-trained residents performed IOTA simple rules on 30 patients for evaluation of inter-observer variability. Results: A total of 100 patients underwent ultrasound examination for the IOTA simple rules. Of them, IOTA simple rules could be applied in 94 (94%) masses including 71 (71.0%) benign masses and 29 (29.0%) malignant masses. The diagnostic performance of IOTA simple rules showed sensitivity of 89.3% (95%CI, 77.8%; 100.7%), specificity 83.3% (95%CI, 74.3%; 92.3%). Inter-observer variability was analyzed using Cohen's kappa coefficient. Kappa indices of the four pairs of raters are 0.713-0.884 (0.722, 0.827, 0.713, and 0.884). Conclusions: IOTA simple rules have high diagnostic performance in discriminating adnexal masses even when are applied by non-expert sonographers, though a training course may be required. Nevertheless, they should be further tested by a greater number of general practitioners before widely use.

Diagnostic Performance of Breast MRI in the Evaluation of Contralateral Breast in Patients with Diagnosed Breast Cancer

  • Saeed, Shaista Afzal;Masroor, Imrana;Beg, Madiha;Idrees, Romana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7607-7612
    • /
    • 2015
  • Aims: The purpose of our study was to evaluate the diagnostic performance of breast magnetic resonance imaging (MRI) in the evaluation of contralateral breast in patients with diagnosed breast cancer. A secondary objective was to determine accuracy of breast MRI in diagnosing multi-focal and multicentric lesions in the ipsilateral breast. Materials and Methods: Using a non-probability convenience sampling technique, patients with histopathologically diagnosed breast cancer with MRI of breast performed to exclude additional lesions were included. MRI findings were correlated with histopathology. In addition, follow-up imaging with mammography and ultrasound was also assessed for establishing stability of negative findings and for the detected of benign lesions. Results: Out of 157 MRI breast conducted during the period of 2008 to 2013, 49 were performed for patients with diagnosed breast cancer. The sample comprised of all females with mean age $50.7{\pm}11.0years$. The patient follow-up imaging was available for a period of 2-5 years. The sensitivity, specificity, and positive and negative predictive values of MRI in the detection of multifocal/multicenteric lesions was 85.7%, 88.8%, 60% and 96.6% respectively and for the detection of lesions in the contralateral breast were 100%, 97%, 83.3% and 100% respectively. Conclusions: Our study highlights the diagnostic performance and the added value of MRI in the detection of multifocal/multicenteric and contralateral malignant lesions. In patients with diagnosed breast cancer having dense breast parenchyma and with infiltrating lobular carcinoma as the index lesion MRI is particularly useful with excellent negative predictive value in the exclusion of additional malignant foci in the ipsilateral and contralateral breasts.

Comparison of Effectiveness in Differentiating Benign from Malignant Ovarian Masses between IOTA Simple Rules and Subjective Sonographic Assessment

  • Tongsong, Theera;Tinnangwattana, Dangcheewan;Vichak-ururote, Linlada;Tontivuthikul, Paponrad;Charoenratana, Cholaros;Lerthiranwong, Thitikarn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4377-4380
    • /
    • 2016
  • Background: To compare diagnostic performance in differentiating benign from malignant ovarian masses between IOTA (the International Ovarian Tumor Analysis) simple rules and subjective sonographic assessment. Materials and Methods: Women scheduled for elective surgery because of ovarian masses were recruited into the study and underwent ultrasound examination within 24 hours of surgery to apply the IOTA simple rules by general gynecologists and to record video clips for subjective assessment by an experienced sonographer. The diagnostic performance of the IOTA rules and subjective assessment for differentiation between benign and malignant masses was compared. The gold standard diagnosis was pathological or operative findings. Results: A total of 150 ovarian masses were covered, comprising 105 (70%) benign and 45 (30%) malignant. Of them, the IOTA simple rules could be applied in 119 (79.3%) and were inconclusive in 31 (20.7%) whereas subjective assessment could be applied in all cases (100%). The sensitivity and the specificity of the IOTA simple rules and subjective assessment were not significantly different, 82.9% vs 86.7% and 94.0% vs 94.3% respectively. The agreement of the two methods in prediction was high with a Kappa index of 0.835. Conclusions: Both techniques had a high diagnostic performance in differentiation between benign and malignant ovarian masses but the IOTA rules had a relatively high rate of inconclusive results. The IOTA rules can be used as an effective screening technique by general gynecologists but when the results are inconclusive they should consult experienced sonographers.

Diagnosis of Low-Level Aviation Turbulence Using the Korea Meteorological Administration Post Processing (KMAPP) (고해상도 규모상세화 수치자료 산출체계(KMAPP)를 이용한 저고도 항공난류 진단)

  • Seok, Jae-Hyeok;Choi, Hee-Wook;Kim, Yeon-Hee;Lee, Sang-Sam
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • In order to diagnose low-level turbulence in Korea, diagnostic indices of low-level turbulence were calculated from Aug 2016 to Jul 2019 using a Korea Meteorological Administration Post Precessing (KMAPP) developed by the National Institute Meteorological Sciences (NIMS), and the indices were evaluated using Aircaft Meteorological Data Relay (AMDAR). In the mean horizontal distribution of diagnostic indices calculated, severe turbulence was simulated along major domestic mountains, including near the Taebaek Mountains, the Sobaek Mountains and Hallasan Mountain on Jeju Island due to geographical factors. Later, detection performance was evaluated by calculating the KMAPP Low-Level Turbulencd index (KLT) on combined index, using AUC value of Individual diagnostic indices as a weight. The result showed that the AUC value of KLT was 0.73, and the detection performance was improved (0.02-0.13) when the index was combined. Also, when looking for the AMDAR data is divided into years, seasons, and altitudes, up to 0.94 AUC values were found in winter (DJF) and the surface (surface-1,000ft). By using high-resolution numerical data reflecting detailed terrain data, local turbulence distribution was well demonstrated and high detection performance was shown at low-level.

Percutaneous Ultrasound-Guided Fine-Needle Aspiration Cytology and Core-Needle Biopsy for Laryngeal and Hypopharyngeal Masses

  • Dongbin Ahn;Gil Joon Lee;Jin Ho Sohn;Jeong Eun Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.596-603
    • /
    • 2021
  • Objective: To evaluate the feasibility and diagnostic performance of ultrasound (US)-guided fine-needle aspiration cytology and core-needle biopsy (US-FNAC/CNB) for the diagnosis of laryngo-hypopharyngeal masses. Materials and Methods: This was a single-center prospective case series. From January 2018 to June 2019, we initially enrolled 40 patients with highly suspicious laryngo-hypopharyngeal masses on laryngoscopic examinations. Of these, 28 patients with the mass involving or abutting the pre-epiglottic, paraglottic, pyriform sinus, and/or subglottic regions were finally included. These patients underwent US examinations with/without subsequent US-FNAC/CNB under local anesthesia for evaluation of the laryngo-hypopharyngeal mass. Results: Of the 28 patients who underwent US examinations, a laryngo-hypopharyngeal mass was identified in 26 patients (92.9%). US-FNAC/CNB was performed successfully in 25 of these patients (96.2%), while the procedure failed to target the mass in 1 patient (3.8%). The performance of US caused minor subclinical hematoma in 2 patients (7.7%), but no major complications occurred. US-FNAC/CNB yielded conclusive results in 24 (96.0%) out of the 25 patients with a successful procedure, including 23 patients with squamous cell carcinoma (SCC) and 1 patient with a benign mass. In one patient with atypical cells in US-FNAC, additional direct laryngoscopic biopsy (DLB) was required to confirm SCC. Among the 26 patients who received US-FNAC/CNB, the time from first visit to pathological diagnosis was 7.8 days. For 24 patients finally diagnosed with SCC, the time from first visit to the initiation of treatment was 25.2 days. The mean costs associated with US-FNAC/CNB was $272 under the Korean National Health Insurance Service System. Conclusion: US-FNAC/CNB for a laryngo-hypopharyngeal mass is technically feasible in selected patients, providing good diagnostic performance. This technique could be used as a first-line diagnostic modality by adopting appropriate indications to avoid general anesthesia and DLB-related complications.

Improving the Specificity of CT Angiography for the Diagnosis of Hepatic Artery Occlusion after Liver Transplantation in Suspected Patients with Doppler Ultrasound Abnormalities

  • Jin Sil Kim;Dong Wook Kim;Kyoung Won Kim;Gi Won Song;Sung Gyu Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.52-59
    • /
    • 2022
  • Objective: To investigate whether the diagnostic performance of CT angiography (CTA) could be improved by modifying the conventional criterion (anastomosis site abnormality) to diagnose hepatic artery occlusion (HAO) after liver transplantation (LT) in suspected patients with Doppler ultrasound (US) abnormalities. Materials and Methods: One hundred thirty-four adult LT recipients (88 males and 46 females; mean age, 52.7 years) with suspected HAO on Doppler US (40 HAO and 94 non-HAO according to the reference standards) were included. We evaluated 1) abnormalities in the HA anastomosis, categorized as a cutoff, ≥ 50% stenosis at the anastomotic site, or diffuse stenosis at both graft and recipient sides around the anastomosis, and 2) abnormalities in the distal run-off, including invisibility or irregular, faint, and discontinuous enhancement. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional (considering anastomosis site abnormalities alone) and modified CTA criteria (abnormalities in both the anastomosis site and distal run-off) for the diagnosis of HAO were calculated and compared using the McNemar test. Results: By using the conventional criterion to diagnose HAO, the sensitivity, specificity, PPV, NPV, and accuracy were 100% (40/40), 74.5% (70/94), 62.5% (40/64), 100% (70/70), and 82.1% (110/134), respectively. The modified criterion for diagnosing HAO showed significantly increased specificity (93.6%, 88/94) and accuracy (93.3%, 125/134) compared to that with the conventional criterion (p = 0.001 and 0.002, respectively), although the sensitivity (92.5%, 37/40) decreased slightly without statistical significance (p = 0.250). Conclusion: The modified criterion considering abnormalities in both the anastomosis site and distal run-off improved the diagnostic performance of CTA for HAO in suspected patients with Doppler US abnormalities, particularly by increasing the specificity.

Monitoring Response to Neoadjuvant Chemotherapy of Primary Osteosarcoma Using Diffusion Kurtosis Magnetic Resonance Imaging: Initial Findings

  • Chenglei Liu;Yan Xi;Mei Li;Qiong Jiao;Huizhen Zhang;Qingcheng Yang;Weiwu Yao
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.801-811
    • /
    • 2019
  • Objective: To determine whether diffusion kurtosis imaging (DKI) is effective in monitoring tumor response to neoadjuvant chemotherapy in patients with osteosarcoma. Materials and Methods: Twenty-nine osteosarcoma patients (20 men and 9 women; mean age, 17.6 ± 7.8 years) who had undergone magnetic resonance imaging (MRI) and DKI before and after neoadjuvant chemotherapy were included. Tumor volume, apparent diffusion coefficient (ADC), mean diffusivity (MD), mean kurtosis (MK), and change ratio (ΔX) between pre-and post-treatment were calculated. Based on histologic response, the patients were divided into those with good response (≥ 90% necrosis, n = 12) and those with poor response (< 90% necrosis, n = 17). Several MRI parameters between the groups were compared using Student's t test. The correlation between image indexes and tumor necrosis was determined using Pearson's correlation, and diagnostic performance was compared using receiver operating characteristic curves. Results: In good responders, MDpost, ADCpost, and MKpost values were significantly higher than in poor responders (p < 0.001, p < 0.001, and p = 0.042, respectively). The ΔMD and ΔADC were also significantly higher in good responders than in poor responders (p < 0.001 and p = 0.01, respectively). However, no significant difference was observed in ΔMK (p = 0.092). MDpost and ΔMD showed high correlations with tumor necrosis rate (r = 0.669 and r = 0.622, respectively), and MDpost had higher diagnostic performance than ADCpost (p = 0.037) and MKpost (p = 0.011). Similarly, ΔMD also showed higher diagnostic performance than ΔADC (p = 0.033) and ΔMK (p = 0.037). Conclusion: MD is a promising biomarker for monitoring tumor response to preoperative chemotherapy in patients with osteosarcoma.

Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19

  • Eui Jin Hwang;Hyungjin Kim;Soon Ho Yoon;Jin Mo Goo;Chang Min Park
    • Korean Journal of Radiology
    • /
    • v.21 no.10
    • /
    • pp.1150-1160
    • /
    • 2020
  • Objective: To describe the experience of implementing a deep learning-based computer-aided detection (CAD) system for the interpretation of chest X-ray radiographs (CXR) of suspected coronavirus disease (COVID-19) patients and investigate the diagnostic performance of CXR interpretation with CAD assistance. Materials and Methods: In this single-center retrospective study, initial CXR of patients with suspected or confirmed COVID-19 were investigated. A commercialized deep learning-based CAD system that can identify various abnormalities on CXR was implemented for the interpretation of CXR in daily practice. The diagnostic performance of radiologists with CAD assistance were evaluated based on two different reference standards: 1) real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) results for COVID-19 and 2) pulmonary abnormality suggesting pneumonia on chest CT. The turnaround times (TATs) of radiology reports for CXR and rRT-PCR results were also evaluated. Results: Among 332 patients (male:female, 173:159; mean age, 57 years) with available rRT-PCR results, 16 patients (4.8%) were diagnosed with COVID-19. Using CXR, radiologists with CAD assistance identified rRT-PCR positive COVID-19 patients with sensitivity and specificity of 68.8% and 66.7%, respectively. Among 119 patients (male:female, 75:44; mean age, 69 years) with available chest CTs, radiologists assisted by CAD reported pneumonia on CXR with a sensitivity of 81.5% and a specificity of 72.3%. The TATs of CXR reports were significantly shorter than those of rRT-PCR results (median 51 vs. 507 minutes; p < 0.001). Conclusion: Radiologists with CAD assistance could identify patients with rRT-PCR-positive COVID-19 or pneumonia on CXR with a reasonably acceptable performance. In patients suspected with COVID-19, CXR had much faster TATs than rRT-PCRs.