• Title/Summary/Keyword: Performance Calculation

Search Result 2,382, Processing Time 0.029 seconds

PERUPS (PERFORMANCE UPGRADE SYSTEM) FOR ON-LINE PERFORMANCE ANALYSIS OF A NUCLEAR POWER PLANT TURBINE CYCLE

  • KIM SEONGKUN;CHOI KWANGHEE
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.167-176
    • /
    • 2005
  • We developed the PERUPS system to aid the on-line performance analysis for the turbine cycle of the YongGwang 3 and 4 nuclear power plants. Procedure of measurement validation is included in the performance calculation to obtain heat balance. Precision of on-line performance calculation is increased via practical modifications of standard calculation algorithms based on the PTC (Performance Test Code). The proposed system also provides useful Web-based aids for performance analysis, including performance data management, a graphic viewer for heat balance and turbine expansion lines, and synthesized reports of performance.

The Effect of EAMaturity on Information Management and Performance (EA성숙도가 정보화관리 성과에 미치는 영향에 관한 연구)

  • Yi, Dong-Wook;Juhn, Sung-Hyun;Park, Chan-Uk
    • Journal of Information Technology Services
    • /
    • v.11 no.1
    • /
    • pp.39-58
    • /
    • 2012
  • This study was carried out to figure out the relationship between EAmaturity, information management capacity, and information performance, and find the effect between these variables and the reciprocal causation. The study found that EAmaturity has a positive effect on information resource management and performance. In other words, the effect of input, calculation, management and utilization factors on information planning in EAmaturity showed that calculation, management and utilization factors have a significant effect on the information planning. While the effect of input, calculation, management and utilization factors on information introduction and management showed that only both calculation and utilization have a significant effect on the information management factor. It says that EAinput in EAmaturity does not play a big part in the planning stage, as well as not go through a series of process that is connected to the maturity stage by immediate field application. Consequently, EAmaturity varies from the level that EAcreates introduction and performance according to organization. This suggests that the maturity and performance can be also changed by the level that EAcreates information performance by accepting and using this capability within organization as well as the capability to introduce and fully perform the EAsystem presented in enterprise architecture framework of public sector.

On-line Performance Calculation Module of IGCC Power Plant (IGCC 온라인 성능계산 모듈)

  • Joo, Yong-Jin;Kim, Si-Moon;Lee, Min-Chul;Chung, Jae-Hwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.364-367
    • /
    • 2008
  • This present paper describes concepts of the real-time operation monitoring system as a tool for enhancing the reliability and raising the availability of the first Korea IGCC (Integrated Gasification Combined Cycle) power plant. This system consists of five (5) modules : (1) Data Validation Module, (2) Performance Calculation Module (3) Performance Diagnostic Module, (4) Trip Information Module, and (5) Statistics Analysis Module. Among these modules, Performance Calculation Module is explained in more detail. The objective of this module is to continuously evaluate the degradation (decrease in performance) of the IGCC plant and its equipment in order to provide plant operators additional information to help them identify problems, improve performance.

  • PDF

Analysis of SLF Interruption Performance of Self-Blast Circuit Breaker by Means of CFD Calculation

  • Kim, Hong-Kyu;Chong, Jin-Kyo;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.254-258
    • /
    • 2014
  • This paper presents the performance analysis results of a short line fault interruption of a gas circuit breaker, particularly a self-blast type breaker. Hot gas flow analysis was carried out using a CFD calculation combined with the arc model and nozzle ablation model. To evaluate the interruption performance, the index function was defined using the pressure in the heating chamber and the density above the arc region. The simulation and test results showed that the gas flow field and suitable choice of an interruption performance index can be used to predict the interruption characteristics and provide guidelines for designing self-blast breakers with a higher interruption capability.

Development of a Performance Diagnosis Program for Gas Turbines Using Turbine Inlet Temperature Correction (터빈입구온도 보정기법을 적용한 가스터빈 성능진단 프로그램 개발)

  • Lee, Jae Hong;Kang, Do Won;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.32-40
    • /
    • 2017
  • In this study, an in-house program to analyze the performance degradation for gas turbines is developed using MATLAB and is validated using commercial software. This program consists of design and off-design calculations. The results of design calculation is used for reference values of off-design calculation. The off-design calculation is composed of measured and expected performance analyses, and turbine inlet temperature correction. In general, performance degradation is analyzed by comparing the results of measured and expected performance analysis. However, if gas turbine performance degrades, turbine inlet temperature might increase due to the general control logic to comply with the power demand. Therefore, it is required to consider the deviation of turbine inlet temperature from the normal value in the performance diagnosis to analyze the performance degradation exactly. In this study, a special effort is given to the correction of turbine inlet temperature. The accuracy of the developed program is confirmed by comparison with commercial software, and its capability of performance diagnosis using the turbine inlet temperature correction is demonstrated.

Performance Simulation of Part Load Operation for 2MWe Circulating Fluidized Bed Boiler (2MWe 순환유동상 보일러의 부분 부하 운전 성능 모사)

  • Kim, Taehyun;Choi, Sangmin;Hyun, Ju-soo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.35-36
    • /
    • 2012
  • Part load operation usually covers large periods of the total operation time on the economic ground and electricity demand in small-scale boilers. Performance analysis of part load behavior is very important for the purpose of boiler operation optimization. A simple thermal calculation approach is applied to predict performance of a pilot-scale circulating fluidized bed (CFB) boiler at part load operation. Verification has been carried out by comparing between calculation results an operation data of the boiler.

  • PDF

Intermittent Heating and Cooling Load Calculation Method -Comparing with ISO 13790

  • Lee, Sang-Hoon
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • College of Architecture, Georgia Institute of Technology, Atlanta, GA, US Abstract The intermittent heating and cooling energy need calculation of the ISO 13790 monthly method was examined. The current ISO 13790 method applies a reduction factor to the continuous heating and cooling need calculation result to derive the intermittent heating and cooling for each month. This paper proposes a method for the intermittent energy need calculation based on the internal mean temperature calculation. The internal temperature calculation procedure was introduced considering the heat-balance taking into account of heat gain, heat loss, and thermal inertia for reduced heating and cooling period. Then, the calculated internal mean temperature was used for the intermittent heating and cooling energy need calculation. The calculation results from the proposed method were compared to the current ISO 13790 method and validated with a dynamic simulation using EnergyPlus. The study indicates that the intermittent heating and cooling energy need calculation method using the proposed model improves transparency of the current ISO 13790 method and draws more rational outcomes in the monthly heating and cooling energy need calculation.

Performance Prediction of the 1-Stags Axial Fan using Steady Coupled Blade Row Calculation Model (정상 간섭 익렬 계산 모델을 용한 1단 축류 송풍기의 성능 예측)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.49-54
    • /
    • 1998
  • The flow inside an axial turbomachinery with multi-stage can be characterized as unsteady phenomena. In order to predict accurately these complex unsteady flow patterns including rotor-stator interaction effects, enormous computer resources are required. So it is not compatible in preliminary design process. In this study, steady coupled blade row flow with rotor-stator interaction solver is developed using interrow mixing model and used to predict the performance of the axial fan. To verify the computational method, the calculations are compared with experimental results and show satisfactory agreement with them. The interaction effects on the performance of the axial fan have also been studied by comparing the results of steady coupled blade row and steady single blade row flow calculation.

  • PDF

Loss Calculation Method of Grid-Connected Photovoltaic System (계통연계형 태양광발전시스템의 손실 산출방법)

  • So, Jung-Hun;Lim, Hyun-Mook;Wang, Hye-Mi;Jung, Young-Seok;Ko, Suk-Whan;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.18-23
    • /
    • 2013
  • This paper presents a simple but valid loss calculation method of grid-connected photovoltaic system based on normalized yield model. The proposed method can be represented as a quantitative value for five losses and performance of grid-connected photovoltaic system with three years monitored data. These results will indicate that it is useful to investigate various loss factors causing the performance obstruction, enhance the lifetime yield for changing meteorological conditions, and determine the optimal design and performance improvement of grid-connected photovoltaic system.

Targetless displacement measurement of RSW based on monocular vision and feature matching

  • Yong-Soo Ha;Minh-Vuong Pham;Jeongki Lee;Dae-Ho Yun;Yun-Tae Kim
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.207-218
    • /
    • 2023
  • Real-time monitoring of the behavior of reinforced soil retaining wall (RSW) is required for safety checks. In this study, a targetless displacement measurement technology (TDMT) consisting of an image registration module and a displacement calculation module was proposed to monitor the behavior of RSW, in which facing displacement and settlement typically occur. Laboratory and field experiments were conducted to compare the measuring performance of natural target (NT) with the performance of artificial target (AT). Feature count- and location-based performance metrics and displacement calculation performance were analyzed to determine their correlations. The results of laboratory and field experiments showed that the feature location-based performance metric was more relevant to the displacement calculation performance than the feature count-based performance metric. The mean relative errors of the TDMT were less than 1.69 % and 5.50 % for the laboratory and field experiments, respectively. The proposed TDMT can accurately monitor the behavior of RSW for real-time safety checks.