• Title/Summary/Keyword: Performance Bias

Search Result 983, Processing Time 0.03 seconds

The Determinants of R&D and Product Innovation Pattern in High-Technology Industry and Low-Technology Industry: A Hurdle Model and Heckman Sample Selection Model Approach (고기술산업과 저기술산업의 제품혁신패턴 및 연구개발 결정요인 분석: Hurdle 모형과 Heckman 표본선택모형을 중심으로)

  • Lee, Yunha;Kang, Seung-Gyu;Park, Jaemin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.76-91
    • /
    • 2019
  • There have been many studies to examine the patterns in innovations reflecting industry-specific characteristics from an evolutionary economics perspective. The purpose of this study is to identify industry-specific differences in product innovation patterns and determinants of innovation performance. For this, Korean manufacturing is classified into high-tech industries and low-tech industries according to technology intensity. It is also pointed out that existing research does not reflect the decision-making process of firms' R&D implementations. In order to solve this problem, this study presents a Heckman sample selection model and a double-hurdle model as alternatives, and analyzes data from 1,637 firms in the 2014 Survey on Technology of SMEs. As a result, it was confirmed that the determinants and patterns of manufacturing in small and medium-size enterprise (SME) product innovation are significantly different between high-tech and low-tech industries. Also, through an extended empirical model, we found that there exist a sample selection bias and a hurdle-like threshold in the decision-making process. In this study, the industry-specific features and patterns of product innovation are examined from a multi-sided perspective, and it is meaningful that the decision-making process for manufacturing SMEs' R&D performance can be better understood.

A Study on the Development of a Fire Site Risk Prediction Model based on Initial Information using Big Data Analysis (빅데이터 분석을 활용한 초기 정보 기반 화재현장 위험도 예측 모델 개발 연구)

  • Kim, Do Hyoung;Jo, Byung wan
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.245-253
    • /
    • 2021
  • Purpose: This study develops a risk prediction model that predicts the risk of a fire site by using initial information such as building information and reporter acquisition information, and supports effective mobilization of fire fighting resources and the establishment of damage minimization strategies for appropriate responses in the early stages of a disaster. Method: In order to identify the variables related to the fire damage scale on the fire statistics data, a correlation analysis between variables was performed using a machine learning algorithm to examine predictability, and a learning data set was constructed through preprocessing such as data standardization and discretization. Using this, we tested a plurality of machine learning algorithms, which are evaluated as having high prediction accuracy, and developed a risk prediction model applying the algorithm with the highest accuracy. Result: As a result of the machine learning algorithm performance test, the accuracy of the random forest algorithm was the highest, and it was confirmed that the accuracy of the intermediate value was relatively high for the risk class. Conclusion: The accuracy of the prediction model was limited due to the bias of the damage scale data in the fire statistics, and data refinement by matching data and supplementing the missing values was necessary to improve the predictive model performance.

A Vision Transformer Based Recommender System Using Side Information (부가 정보를 활용한 비전 트랜스포머 기반의 추천시스템)

  • Kwon, Yujin;Choi, Minseok;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.119-137
    • /
    • 2022
  • Recent recommendation system studies apply various deep learning models to represent user and item interactions better. One of the noteworthy studies is ONCF(Outer product-based Neural Collaborative Filtering) which builds a two-dimensional interaction map via outer product and employs CNN (Convolutional Neural Networks) to learn high-order correlations from the map. However, ONCF has limitations in recommendation performance due to the problems with CNN and the absence of side information. ONCF using CNN has an inductive bias problem that causes poor performances for data with a distribution that does not appear in the training data. This paper proposes to employ a Vision Transformer (ViT) instead of the vanilla CNN used in ONCF. The reason is that ViT showed better results than state-of-the-art CNN in many image classification cases. In addition, we propose a new architecture to reflect side information that ONCF did not consider. Unlike previous studies that reflect side information in a neural network using simple input combination methods, this study uses an independent auxiliary classifier to reflect side information more effectively in the recommender system. ONCF used a single latent vector for user and item, but in this study, a channel is constructed using multiple vectors to enable the model to learn more diverse expressions and to obtain an ensemble effect. The experiments showed our deep learning model improved performance in recommendation compared to ONCF.

The psychological factors and impacts in lottery-purchasing decisions (복권 구매행동의 심리적 결정요인과 그 영향)

  • Taekyun Hur
    • Korean Journal of Culture and Social Issue
    • /
    • v.10 no.3
    • /
    • pp.19-36
    • /
    • 2004
  • An experimental research investigated the components of lottery games affecting lottery-purchasing behaviors and the psychological consequences of the behaviors. In the experiment, participants were given a chance to purchase a lottery tickets during a series of computer games and their decision of purchasing the lottery ticket was measured. Also, the size and probability of the lottery games were manipulated and the perceived difficulty, satisfaction of the mid-outcome, and perceived probability of success in the computer game were measured in order to examine their impacts on participants' lottery-purchasing decisions. In addition, the behavioral tendency, satisfaction of the final outcome, and perceived self-capability in the computer game were measured at the end of the computer games in order to examine the effects of lottery-purchasing experiences on the variables. Participants who perceived the games as easier and estimated the probability of their success highly were more likely to buy the lottery tickets. However, the winning prize and odd of lottery tickets, perceived satisfaction of their own performance, and the performance itself did not influence the purchasing decisions. The common beliefs on the negative effects of lottery-purchasing experiences on human motivation and behaviors were not supported. The implications of the present research findings and limitations of the experimental research on lottery were discussed.

  • PDF

Assessing the skill of seasonal flow forecasts from ECMWF for predicting inflows to multipurpose dams in South Korea (ECMWF 계절 기상 전망을 활용한 국내 다목적댐 유입량 예측의 성능 비교·평가)

  • Lee, Yong Shin;Kang, Shin Uk
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.571-583
    • /
    • 2024
  • Forecasting dam inflows in the medium to long term is crucial for effective dam operation and the prevention of water-related disasters such as floods and droughts. However, the increasing frequency of extreme weather events due to climate change has made hydrological forecasting more challenging. Since 2000, seasonal weather forecasts, which provide predictions for weather variables up to about seven months ahead, and their hydrological interpretation, known as Seasonal Flow Forecasts (SFFs) have gained significant global interest. This study utilises seasonal weather forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), converting them into inflow forecasts using a hydrological model for 12 multipurpose dams in South Korea from 2011 to 2020. We then compare the performance of these SFFs with the Ensemble Streamflow Prediction (ESP). Our results indicate that while SFFs are more effective for short-term predictions of 1-2 months, ESP outperforms SFFs for long-term predictions. Seasonally, the performance of SFFs is higher in October-November but lower from December to February. Moreover, our findings demonstrate that SFFs are highly effective in quantitatively predicting dry conditions, although they tend to underestimate inflows under wet conditions.

The Impact of Human Resource Innovativeness, Learning Orientation, and Their Interaction on Innovation Effect and Business Performance : Comparison of Small and Medium-Sized vs. Large-Sized Companies (인적자원의 혁신성, 학습지향성, 이들의 상호작용이 혁신효과 및 사업성과에 미치는 영향 : 중소기업과 대기업의 비교연구)

  • Yoh, Eunah
    • Korean small business review
    • /
    • v.31 no.2
    • /
    • pp.19-37
    • /
    • 2009
  • The purpose of this research is to explore differences between small and medium-sized companies and large-sized companies in the impact of human resource innovativeness(HRI), learning orientation(LO), and HRI-LO interaction on innovation effect and business performance. Although learning orientation has long been considered as a key factor influencing good performance of a business, little research was devoted to exploring the effect of HRI-LO interaction on innovation effect and business performance. In this study, it is investigated whether there is a synergy effect between innovative human workforce and learning orientation corporate culture, in addition to each by itself, to generate good business performance as well as a success of new innovations in the market. Research hypotheses were as follows, including H1) human resource innovativeness(HRI), learning orientation(LO), and interactions of HRI and LO(HRI-LO interaction) positively affect innovation effect, H2) there is a difference of the effect of HRI, LO, and HRI-LO interaction on innovation effect between large-sized and small-sized companies, H3) HRI, LO, HRI-LO interaction, innovation effect positively affect business performance, and H4) there is a difference of the effect of HRI, LO, HRI-LO interaction, and innovation effect on business performance between large-sized and small-sized companies. Data were obtained from 479 practitioners through a web survey since the web survey is an efficient method to collect a national data at a variety of fields. A single respondent from a company was allowed to participate in the study after checking whether they have more than 5-year work experiences in the company. To check whether a common source bias is existed in the sample, additional data from a convenient sample of 97 companies were gathered through the traditional survey method, and were used to confirm correlations between research variables of the original sample and the additional sample. Data were divided into two groups according to company size, such as 352 small and medium-sized companies with less than 300 employees and 127 large-sized companies with 300 or more employees. Data were analyzed through t-test and regression analyses. HRI which is the innovativeness of human resources in the company was measured with 9 items assessing the innovativenss of practitioners in staff, manager, and executive-level positions. LO is the company's effort to encourage employees' development, sharing, and utilizing of knowledge through consistent learning. LO was measured by 18 items assessing commitment to learning, vision sharing, and open-mindedness. Innovation effect which assesses a success of new products/services in the market, was measured with 3 items. Business performance was measured by respondents' evaluations on profitability, sales increase, market share, and general business performance, compared to other companies in the same field. All items were measured by using 6-point Likert scales. Means of multiple items measuring a construct were used as variables based on acceptable reliability and validity. To reduce multi-collinearity problems generated on the regression analysis of interaction terms, centered data were used for HRI, LO, and Innovation effect on regression analyses. In group comparison, large-sized companies were superior on annual sales, annual net profit, the number of new products/services in the last 3 years, the number of new processes advanced in the last 3 years, and the number of R&D personnel, compared to small and medium-sized companies. Also, large-sized companies indicated a higher level of HRI, LO, HRI-LO interaction, innovation effect and business performance than did small and medium-sized companies. The results indicate that large-sized companies tend to have more innovative human resources and invest more on learning orientation than did small-sized companies, therefore, large-sized companies tend to have more success of a new product/service in the market, generating better business performance. In order to test research hypotheses, a series of multiple-regression analysis was conducted. In the regression analysis examining the impact on innovation effect, important results were generated as : 1) HRI, LO, and HRI-LO affected innovation effect, and 2) company size indicated a moderating effect. Based on the result, the impact of HRI on innovation effect would be greater in small and medium-sized companies than in large-sized companies whereas the impact of LO on innovation effect would be greater in large-sized companies than in small and medium-sized companies. In other words, innovative workforce would be more important in making new products/services that would be successful in the market for small and medium-sized companies than for large-sized companies. Otherwise, learning orientation culture would be more effective in making successful products/services for large-sized companies than for small and medium-sized companies. Based on these results, research hypotheses 1 and 2 were supported. In the analysis of a regression examining the impact on business performance, important results were generated as : 1) innovation effect, LO, and HRI-LO affected business performance, 2) HRI by itself did not have a direct effect on business performance regardless of company size, and 3) company size indicated a moderating effect. Specifically, an effect of the HRI-LO interaction on business performance was stronger in large-sized companies than in small and medium-sized companies. It means that the synergy effect of innovative human resources and learning orientation culture tends to be stronger as company is larger. Referring to these result, research hypothesis 3 was partially supported whereas hypothesis 4 was supported. Based on research results, implications for companies were generated. Regardless of company size, companies need to develop the learning orientation corporate culture as well as human resources' innovativeness together in order to achieve successful development of innovative products and services as well as to improve sales and profits. However, the effectiveness of the HRI-LO interaction would be varied by company size. Specifically, the synergy effect of HRI-LO was stronger to make a success of new products/services in small and medium-sized companies than in large-sized companies. However, the synergy effect of HRI-LO was more effective to increase business performance of large-sized companies than that of small and medium-sized companies. In the case of small and medium-sized companies, business performance was achieved more through the success of new products/services than much directly affected by HRI-LO. The most meaningful result of this study is that the effect of HRI-LO interaction on innovation effect and business performance was confirmed. It was often ignored in the previous research. Also, it was found that the innovativeness of human workforce would not directly influence in generating good business performance, however, innovative human resources would indirectly affect making good business performance by contributing to achieving the development of new products/services that would be successful in the market. These findings would provide valuable managerial implications specifically in regard to the development of corporate culture and education program of small and medium-sized as well as large-sized companies in a variety of fields.

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.

A New Bias Scheduling Method for Improving Both Classification Performance and Precision on the Classification and Regression Problems (분류 및 회귀문제에서의 분류 성능과 정확도를 동시에 향상시키기 위한 새로운 바이어스 스케줄링 방법)

  • Kim Eun-Mi;Park Seong-Mi;Kim Kwang-Hee;Lee Bae-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1021-1028
    • /
    • 2005
  • The general solution for classification and regression problems can be found by matching and modifying matrices with the information in real world and then these matrices are teaming in neural networks. This paper treats primary space as a real world, and dual space that Primary space matches matrices using kernel. In practical study, there are two kinds of problems, complete system which can get an answer using inverse matrix and ill-posed system or singular system which cannot get an answer directly from inverse of the given matrix. Further more the problems are often given by the latter condition; therefore, it is necessary to find regularization parameter to change ill-posed or singular problems into complete system. This paper compares each performance under both classification and regression problems among GCV, L-Curve, which are well known for getting regularization parameter, and kernel methods. Both GCV and L-Curve have excellent performance to get regularization parameters, and the performances are similar although they show little bit different results from the different condition of problems. However, these methods are two-step solution because both have to calculate the regularization parameters to solve given problems, and then those problems can be applied to other solving methods. Compared with UV and L-Curve, kernel methods are one-step solution which is simultaneously teaming a regularization parameter within the teaming process of pattern weights. This paper also suggests dynamic momentum which is leaning under the limited proportional condition between learning epoch and the performance of given problems to increase performance and precision for regularization. Finally, this paper shows the results that suggested solution can get better or equivalent results compared with GCV and L-Curve through the experiments using Iris data which are used to consider standard data in classification, Gaussian data which are typical data for singular system, and Shaw data which is an one-dimension image restoration problems.

A Study on the Born Global Venture Corporation's Characteristics and Performance ('본글로벌(born global)전략'을 추구하는 벤처기업의 특성과 성과에 관한 연구)

  • Kim, Hyung-Jun;Jung, Duk-Hwa
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.3
    • /
    • pp.39-59
    • /
    • 2007
  • The international involvement of a firm has been described as a gradual development process "a process in which the enterprise gradually increases its international involvement in many studies. This process evolves in the interplay between the development of knowledge about foreign markets and operations on one hand and increasing commitment of resources to foreign markets on the other." On the basis of Uppsala internationalization model, many studies strengthen strong theoretical and empirical support. According to the predictions of the classic stages theory, the internationalization process of firms have been recognized and characterized gradual evolution to foreign markets, so called stage theory: indirect & direct export, strategic alliance and foreign direct investment. However, termed "international new ventures" (McDougall, Shane, and Oviatt 1994), "born globals" (Knight 1997; Knight and Cavusgil 1996; Madsen and Servais 1997), "instant internationals" (Preece, Miles, and Baetz 1999), or "global startups" (Oviatt and McDougall 1994) have been used and come into spotlight in internationalization study of technology intensity venture companies. Recent researches focused on venture company have suggested the phenomenons of 'born global' firms as a contradiction to the stages theory. Especially the article by Oviatt and McDougall threw the spotlight on international entrepreneurs, on international new ventures, and on their importance in the globalising world economy. Since venture companies have, by definition. lack of economies of scale, lack of resources (financial and knowledge), and aversion to risk taking, they have a difficulty in expanding their market to abroad and pursue internalization gradually and step by step. However many venture companies have pursued 'Born Global Strategy', which is different from process strategy, because corporate's environment has been rapidly changing to globalization. The existing studies investigate that (1) why the ventures enter into overseas market in those early stage, even in infancy, (2) what make the different international strategy among ventures and the born global strategy is better to the infant ventures. However, as for venture's performance(growth and profitability), the existing results do not correspond each other. They also, don't include marketing strategy (differentiation, low price, market breadth and market pioneer) that is important factors in studying of BGV's performance. In this paper I aim to delineate the appearance of international new ventures and the phenomenons of venture companies' internationalization strategy. In order to verify research problems, I develop a resource-based model and marketing strategies for analyzing the effects of the born global venture firms. In this paper, I suggested 3 research problems. First, do the korean venture companies take some advantages in the aspects of corporate's performances (growth, profitability and overall market performances) when they pursue internationalization from inception? Second, do the korean BGV have firm specific assets (foreign experiences, foreign orientation, organizational absorptive capacity)? Third, What are the marketing strategies of korean BGV and is it different from others? Under these problems, I test then (1) whether the BGV that a firm started its internationalization activity almost from inception, has more intangible resources(foreign experience of corporate members, foreign orientation, technological competences and absorptive capacity) than any other venture firms(Non_BGV) and (2) also whether the BGV's marketing strategies-differentiation, low price, market diversification and preemption strategy are different from Non_BGV. Above all, the main purpose of this research is that results achieved by BGV are indeed better than those obtained by Non_BGV firms with respect to firm's growth rate and efficiency. To do this research, I surveyed venture companies located in Seoul and Deajeon in Korea during November to December, 2005. I gather the data from 200 venture companies and then selected 84 samples, which have been founded during 1999${\sim}$2000. To compare BGV's characteristics with those of Non_BGV, I also had to classify BGV by export intensity over 50% among five or six aged venture firms. Many other researches tried to classify BGV and Non_BGV, but there were various criterion as many as researchers studied on this topic. Some of them use time gap, which is time difference of establishment and it's first internationalization experience and others use export intensity, ration of export sales amount divided by total sales amount. Although using a mixed criterion of prior research in my case, I do think this kinds of criterion is subjective and arbitrary rather than objective, so I do mention my research has some critical limitation in the classification of BGV and Non_BGV. The first purpose of research is the test of difference of performance between BGV and Non_BGV. As a result of t-test, the research show that there are statistically efficient difference not only in the growth rate (sales growth rate compared to competitors and 3 years averaged sales growth rate) but also in general market performance of BGV. But in case of profitability performance, the hypothesis that is BGV is more profit (return on investment(ROI) compared to competitors and 3 years averaged ROI) than Non-BGV was not supported. From these results, this paper concludes that BGV grows rapidly and gets a high market performance (in aspect of market share and customer loyalty) but there is no profitability difference between BGV and Non_BGV. The second result is that BGV have more absorptive capacity especially, knowledge competence, and entrepreneur's international experience than Non_BGV. And this paper also found BGV search for product differentiation, exemption strategy and market diversification strategy while Non_BGV search for low price strategy. These results have never been dealt with other existing studies. This research has some limitations. First limitation is concerned about the definition of BGV, as I mentioned above. Conceptually speaking, BGV is defined as company pursue internationalization from inception, but in empirical study, it's very difficult to classify between BGV and Non_BGV. I tried to classify on the basis of time difference and export intensity, this criterions are so subjective and arbitrary that the results are not robust if the criterion were changed. Second limitation is concerned about sample used in this research. I surveyed venture companies just located in Seoul and Daejeon and also use only 84 samples which more or less provoke sample bias problem and generalization of results. I think the more following studies that focus on ventures located in other region, the better to verify the results of this paper.

  • PDF

A Study on the Method of Producing the 1 km Resolution Seasonal Prediction of Temperature Over South Korea for Boreal Winter Using Genetic Algorithm and Global Elevation Data Based on Remote Sensing (위성고도자료와 유전자 알고리즘을 이용한 남한의 겨울철 기온의 1 km 격자형 계절예측자료 생산 기법 연구)

  • Lee, Joonlee;Ahn, Joong-Bae;Jung, Myung-Pyo;Shim, Kyo-Moon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.661-676
    • /
    • 2017
  • This study suggests a new method not only to produce the 1 km-resolution seasonal prediction but also to improve the seasonal prediction skill of temperature over South Korea. This method consists of four stages of experiments. The first stage, EXP1, is a low-resolution seasonal prediction of temperature obtained from Pusan National University Coupled General Circulation Model, and EXP2 is to produce 1 km-resolution seasonal prediction of temperature over South Korea by applying statistical downscaling to the results of EXP1. EXP3 is a seasonal prediction which considers the effect of temperature changes according to the altitude on the result of EXP2. Here, we use altitude information from ASTER GDEM, satellite observation. EXP4 is a bias corrected seasonal prediction using genetic algorithm in EXP3. EXP1 and EXP2 show poorer prediction skill than other experiments because the topographical characteristic of South Korea is not considered at all. Especially, the prediction skills of two experiments are lower at the high altitude observation site. On the other hand, EXP3 and EXP4 applying the high resolution elevation data based on remote sensing have higher prediction skill than other experiments by effectively reflecting the topographical characteristics such as temperature decrease as altitude increases. In addition, EXP4 reduced the systematic bias of seasonal prediction using genetic algorithm shows the superior performance for temporal variability such as temporal correlation, normalized standard deviation, hit rate and false alarm rate. It means that the method proposed in this study can produces high-resolution and high-quality seasonal prediction effectively.