• Title/Summary/Keyword: Performance Based Engineering

Search Result 21,786, Processing Time 0.054 seconds

Target Length Estimation of Target by Scattering Center Number Estimation Methods (산란점 수 추정방법에 따른 표적의 길이 추정)

  • Lee, Jae-In;Yoo, Jong-Won;Kim, Nammoon;Jung, Kwangyong;Seo, Dong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.543-551
    • /
    • 2020
  • In this paper, we introduce a method to improve the accuracy of the length estimation of targets using a radar. The HRRP (High Resolution Range Profile) obtained from a received radar signal represents the one-dimensional scattering characteristics of a target, and peaks of the HRRP means the scattering centers that strongly scatter electromagnetic waves. By using the extracted scattering centers, the downrange length of the target, which is the length in the RLOS (Radar Line of Sight), can be estimated, and the real length of the target should be estimated considering the angle between the target and the RLOS. In order to improve the accuracy of the length estimation, parametric estimation methods, which extract scattering centers more exactly than the method using the HRRP, can be used. The parametric estimation method is applied after the number of scattering centers is determined, and is thus greatly affected by the accuracy of the number of scattering centers. In this paper, in order to improve the accuracy of target length estimation, the number of scattering centers is estimated by using AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), and GLE (Gerschgorin Likelihood Estimators), which are the source number estimation methods based on information theoretic criteria. Using the ESPRIT algorithm as a parameter estimation method, a length estimation simulation was performed for simple target CAD models, and the GLE method represented excellent performance in estimating the number of scattering centers and estimating the target length.

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • This paper has proposed an algorithm that detecting for dense small vehicle in large image efficiently. It is consisted of two Ensemble Deep-Learning Network algorithms based on Coarse to Fine method. The system can detect vehicle exactly on selected sub image. In the Coarse step, it can make Voting Space using the result of various Deep-Learning Network individually. To select sub-region, it makes Voting Map by to combine each Voting Space. In the Fine step, the sub-region selected in the Coarse step is transferred to final Deep-Learning Network. The sub-region can be defined by using dynamic windows. In this paper, pre-defined mapping table has used to define dynamic windows for perspective road image. Identity judgment of vehicle moving on each sub-region is determined by closest center point of bottom of the detected vehicle's box information. And it is tracked by vehicle's box information on the continuous images. The proposed algorithm has evaluated for performance of detection and cost in real time using day and night images captured by CCTV on the road.

User authentication using touch positions in a touch-screen interface (터치스크린을 이용한 터치 위치기반 사용자 인증)

  • Kim, Jin-Bok;Lee, Mun-Kyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.135-141
    • /
    • 2011
  • Recent advances in mobile devices and development of various mobile applications dealing with private information of users made user authentication in mobile devices a very important issue. This paper presents a new user authentication method based on touch screen interfaces. This method uses for authentication the PIN digits as well as the exact locations the user touches to input these digits. Our method is fully compatible with the regular PIN entry method which uses numeric keypads, and it provides better usability than the behavioral biometric schemes because its PIN registration process is much simpler. According to our experiments, our method guarantees EERs of 12.8%, 8.3%, and 9.3% for 4-digit PINs, 6-digit PINs, and 11-digit cell phone numbers, respectively, under the extremely conservative assumption that all users have the same PIN digits and cell phone numbers. Thus we can guarantee much higher performance in identification functionality by applying this result to a more practical situation where every user uses distinct PIN and sell phone number. Finally, our method is far more secure than the regular PIN entry method, which is verified by our experiments where attackers are required to recover a PIN after observing the PIN entry processes of the regular PIN and our method under the same level of security parameters.

Case Analysis of Seismic Velocity Model Building using Deep Neural Networks (심층 신경망을 이용한 탄성파 속도 모델 구축 사례 분석)

  • Jo, Jun Hyeon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.2
    • /
    • pp.53-66
    • /
    • 2021
  • Velocity model building is an essential procedure in seismic data processing. Conventional techniques, such as traveltime tomography or velocity analysis take longer computational time to predict a single velocity model and the quality of the inversion results is highly dependent on human expertise. Full-waveform inversions also depend on an accurate initial model. Recently, deep neural network techniques are gaining widespread acceptance due to an increase in their integration to solving complex and nonlinear problems. This study investigated cases of seismic velocity model building using deep neural network techniques by classifying items according to the neural networks used in each study. We also included cases of generating training synthetic velocity models. Deep neural networks automatically optimize model parameters by training neural networks from large amounts of data. Thus, less human interaction is involved in the quality of the inversion results compared to that of conventional techniques and the computational cost of predicting a single velocity model after training is negligible. Additionally, unlike full-waveform inversions, the initial velocity model is not required. Several studies have demonstrated that deep neural network techniques achieve outstanding performance not only in computational cost but also in inversion results. Based on the research results, we analyzed and discussed the characteristics of deep neural network techniques for building velocity models.

A Study on Reducing Learning Time of Deep-Learning using Network Separation (망 분리를 이용한 딥러닝 학습시간 단축에 대한 연구)

  • Lee, Hee-Yeol;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.273-279
    • /
    • 2021
  • In this paper, we propose an algorithm that shortens the learning time by performing individual learning using partitioning the deep learning structure. The proposed algorithm consists of four processes: network classification origin setting process, feature vector extraction process, feature noise removal process, and class classification process. First, in the process of setting the network classification starting point, the division starting point of the network structure for effective feature vector extraction is set. Second, in the feature vector extraction process, feature vectors are extracted without additional learning using the weights previously learned. Third, in the feature noise removal process, the extracted feature vector is received and the output value of each class is learned to remove noise from the data. Fourth, in the class classification process, the noise-removed feature vector is input to the multi-layer perceptron structure, and the result is output and learned. To evaluate the performance of the proposed algorithm, we experimented with the Extended Yale B face database. As a result of the experiment, in the case of the time required for one-time learning, the proposed algorithm reduced 40.7% based on the existing algorithm. In addition, the number of learning up to the target recognition rate was shortened compared with the existing algorithm. Through the experimental results, it was confirmed that the one-time learning time and the total learning time were reduced and improved over the existing algorithm.

Research on The Implementation of Smart Factories through Bottleneck improvement on extrusion production sites using NFC (NFC를 활용한 압출생산현장의 Bottleneck 개선을 통한 스마트팩토리 구현 연구)

  • Lim, Dong-Jin;Kwon, Kyu-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2021
  • For extrusion processes in the process industry, the need to build smart factories is increasing. However, in most extrusion production sites, the production method is continuous, and because the properties of the data are undeed, it is difficult to process the data. In order to solve this problem, we present a methodology utilizing a near field communication (NFC) sensor rather than water-based data entry. To this end, a wireless network environment was built, and a data management method was designed. A non-contact NFC method was studied for the production performance-data input method, and an analysis method was implemented using the pivot function of the Excel program. As a result, data input using NFC was automated, obtaining a quantitative effect from reducing the operator's data processing time. In addition, using the input data, we present a case where a bottleneck is improved due to quality problems.

A Study on Court Auction System using Ethereum-based Ether (이더리움 기반의 이더를 사용한 법원 경매 시스템에 관한 연구)

  • Kim, Hyo-Jong;Han, Kun-Hee;Shin, Seung-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.31-40
    • /
    • 2021
  • Blockchain technology is also actively studied in the real estate transaction field, and real estate transactions have various ways. In this paper, we propose a model that simplifies the authentication procedure of auction systems using Ethereum's Ether to solve the problem of offline court auctions. The proposed model is written in Ethereum's Solidity language, the court registers the sale date and the sale date with the DApp browser, and the bidder accesses the address of the individual's wallet created through Metamask's private key. The bidder then selects the desired sale and enters the bid price amount to participate in the auction. The bidder's record of the highest bid price for the sale he wants is written on the Ethereum test network as a smart contract. and creates a block. Finally, smart contracts written on the network are distributed by the court auction manager to all nodes in the blockchain network, and each node in the blockchain network can be viewed and contract verified. As a result of analyzing the smart contracts of the proposed model and the performance of the system, there are fees incurred due to the creation and use of Ether on platforms using Ethereum, and participation. Ether's changes in value affect the price of the sale, resulting in inconsistent fees in smart contracts each time. However, in future work, we issue our own tokens to solve the market volatility problem and commission problem with the value change of Ether, and refine complex court auction systems.

Comparison of Artificial Intelligence Multitask Performance using Object Detection and Foreground Image (물체탐색과 전경영상을 이용한 인공지능 멀티태스크 성능 비교)

  • Jeong, Min Hyuk;Kim, Sang-Kyun;Lee, Jin Young;Choo, Hyon-Gon;Lee, HeeKyung;Cheong, Won-Sik
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.308-317
    • /
    • 2022
  • Researches are underway to efficiently reduce the size of video data transmitted and stored in the image analysis process using deep learning-based machine vision technology. MPEG (Moving Picture Expert Group) has newly established a standardization project called VCM (Video Coding for Machine) and is conducting research on video encoding for machines rather than video encoding for humans. We are researching a multitask that performs various tasks with one image input. The proposed pipeline does not perform all object detection of each task that should precede object detection, but precedes it only once and uses the result as an input for each task. In this paper, we propose a pipeline for efficient multitasking and perform comparative experiments on compression efficiency, execution time, and result accuracy of the input image to check the efficiency. As a result of the experiment, the capacity of the input image decreased by more than 97.5%, while the accuracy of the result decreased slightly, confirming the possibility of efficient multitasking.

Accuracy evaluation of liver and tumor auto-segmentation in CT images using 2D CoordConv DeepLab V3+ model in radiotherapy

  • An, Na young;Kang, Young-nam
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.341-352
    • /
    • 2022
  • Medical image segmentation is the most important task in radiation therapy. Especially, when segmenting medical images, the liver is one of the most difficult organs to segment because it has various shapes and is close to other organs. Therefore, automatic segmentation of the liver in computed tomography (CT) images is a difficult task. Since tumors also have low contrast in surrounding tissues, and the shape, location, size, and number of tumors vary from patient to patient, accurate tumor segmentation takes a long time. In this study, we propose a method algorithm for automatically segmenting the liver and tumor for this purpose. As an advantage of setting the boundaries of the tumor, the liver and tumor were automatically segmented from the CT image using the 2D CoordConv DeepLab V3+ model using the CoordConv layer. For tumors, only cropped liver images were used to improve accuracy. Additionally, to increase the segmentation accuracy, augmentation, preprocess, loss function, and hyperparameter were used to find optimal values. We compared the CoordConv DeepLab v3+ model using the CoordConv layer and the DeepLab V3+ model without the CoordConv layer to determine whether they affected the segmentation accuracy. The data sets used included 131 hepatic tumor segmentation (LiTS) challenge data sets (100 train sets, 16 validation sets, and 15 test sets). Additional learned data were tested using 15 clinical data from Seoul St. Mary's Hospital. The evaluation was compared with the study results learned with a two-dimensional deep learning-based model. Dice values without the CoordConv layer achieved 0.965 ± 0.01 for liver segmentation and 0.925 ± 0.04 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.927 ± 0.02 for liver division and 0.903 ± 0.05 for tumor division. The dice values using the CoordConv layer achieved 0.989 ± 0.02 for liver segmentation and 0.937 ± 0.07 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.944 ± 0.02 for liver division and 0.916 ± 0.18 for tumor division. The use of CoordConv layers improves the segmentation accuracy. The highest of the most recently published values were 0.960 and 0.749 for liver and tumor division, respectively. However, better performance was achieved with 0.989 and 0.937 results for liver and tumor, which would have been used with the algorithm proposed in this study. The algorithm proposed in this study can play a useful role in treatment planning by improving contouring accuracy and reducing time when segmentation evaluation of liver and tumor is performed. And accurate identification of liver anatomy in medical imaging applications, such as surgical planning, as well as radiotherapy, which can leverage the findings of this study, can help clinical evaluation of the risks and benefits of liver intervention.

Hysteretic behaviors and calculation model of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Zhang, Guoheng;Xin, A.;Bai, Hengyu
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.305-326
    • /
    • 2022
  • To realize the recycling utilization of waste concrete and alleviate the shortage of resources, 11 specimens of steel reinforced recycled concrete (SRRC) filled circular steel tube columns were designed and manufactured in this study, and the cyclic loading tests on the specimens of columns were also carried out respectively. The hysteretic curves, skeleton curves and performance indicators of columns were obtained and analysed in detail. Besides, the finite element model of columns was established through OpenSees software, which considered the adverse effect of recycled coarse aggregate (RA) replacement rates and the constraint effect of circular steel tube on internal RAC. The numerical calculation curves of columns are in good agreement with the experimental curves, which shows that the numerical model is relatively reasonable. On this basis, a series of nonlinear parameters analysis on the hysteretic behaviors of columns were also investigated. The results are as follows: When the replacement rates of RA increases from 0 to 100%, the peak loads of columns decreases by 7.78% and the ductility decreases slightly. With the increase of axial compression ratio, the bearing capacity of columns increases first and then decreases, but the ductility of columns decreases rapidly. Increasing the wall thickness of circular steel tube is very profitable to improve the bearing capacity and ductility of columns. When the section steel ratio increases from 5.54% to 9.99%, although the bearing capacity of columns is improved, it has no obvious contribution to improve the ductility of columns. With the decrease of shear span ratio, the bearing capacity of columns increases obviously, but the ductility decreases, and the failure mode of columns develops into brittle shear failure. Therefore, in the engineering design of columns, the situation of small shear span ratio (i.e., short columns) should be avoided as far as possible. Based on this, the calculation model on the skeleton curves of columns was established by the theoretical analysis and fitting method, so as to determine the main characteristic points in the model. The effectiveness of skeleton curve model is verified by comparing with the test skeleton curves.