• Title/Summary/Keyword: Perfect Plastic

Search Result 74, Processing Time 0.029 seconds

Fabrication of Layered Cu-Fe-Cu Structure by Cold Consolidation of Powders using High-pressure Torsion

  • Asghari-Rad, Peyman;Choi, Yeon Taek;Nguyen, Nhung Thi-Cam;Sathiyamoorthi, Praveen;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.287-292
    • /
    • 2021
  • In this study, the layered structures of immiscible Fe and Cu metals were employed to investigate the interface evolution through solid-state mixing. The pure Fe and Cu powders were cold-consolidated by high-pressure torsion (HPT) to fabricate a layered Cu-Fe-Cu structure. The microstructural evolutions and flow of immiscible Fe and Cu metals were investigated following different iterations of HPT processing. The results indicate that the HPT-processed sample following four iterations showed a sharp chemical boundary between the Fe and Cu layers. In addition, the Cu powders exhibited perfect consolidation through HPT processing. However, the Fe layer contained many microcracks. After 20 iterations of HPT, the shear strain generated by HPT produced interface instability, which caused the initial layered structure to disappear.

The Structural Analysis of Wedge Joint in Composite Motor Case (복합재 연소관의 쐐기형 체결부 구조 해석)

  • 황태경;도영대;김유준
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.64-73
    • /
    • 2000
  • The joint parts was composed of inner AL(aluminum) ring, FRP wedge and motor case which was manufactured by filament wound method. Where the motor case consists of helical and hoop layer. The finite element analysis was performed for the design variable of joint parts to improve the performance of motor case. Where the adhesive layer was modeled to elasto-perfect plastic material and the contact condition of AL ring and wedge was modeled by using the contact surface element of ABAQUS. And the sliding distance of AL ring and the hoop strain of composite case were compared to hydro-static test results to verify the accuracy of analysis results. When wedge and AL ring was perfect bonding, though the hoop strain of joint part was reduced, the maximum shear stress was occurred at the adhesive layer. Thus the adhesive layer had failed due to the high shear stress before the failure was occurred at the case. And as another design method, when wedge and AL ring was contact condition, the shear stress on adhesive layer was decreased. But the hoop stress of joint part increased due to the sliding behavior of AL ring. Finally, the fail was occurred at the composite case of joint part. The improved joint method reinforced by hoop layer to the joint parts under contact condition for wedge and Al. ring reduced the joint part's hoop strain by constraint the sliding behavior of AL ring.

  • PDF

Stability analysis of closely-spaced tunnel using RFEM (확률유한요소 해석에 의한 근접터널 안정성 분석)

  • Kim, Sang-Gyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2008
  • In this paper, the modeling procedure of random field with an elasto-plastic finite element algorithm and probability of failure on closely-spaced tunnel were investigated. Local average subdivision (LAS) method which can generate discrete random variables fast and accurately as well as change the resolution in certain region was used. And correlated value allocating and weighted average method were suggested to implement geometrical characteristics of tunnel. After the probability of failure on the test problem was thoroughly investigated using random finite element method, the results were compared with the deterministic strength reduction factor method and single random variable method. Of particular importance in this work, is the conclusion that the probability of failure determined by simplified probabilistic analysis, in which spatial variability is ignored by assuming perfect correlation, can be estimated from the safety factor determined by strength reduction factor method. Also, single random variable method can lead to unconservative estimates of the probability of failure.

  • PDF

Plasticity and Fracture Behaviors of Marine Structural Steel, Part I: Theoretical Backgrounds of Strain Hardening and Rate Hardening (조선 해양 구조물용 강재의 소성 및 파단 특성 I: 변형률 경화 및 변형률 속도 경화의 이론적 배경)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.134-144
    • /
    • 2011
  • In this paper, the global study trends for material behaviors are investigated regarding the static and dynamic hardenings and final fractures of marine structural steels. In particular, after reviewing all of the papers published at the 4th and 5th ICCGS (International Conference on Collision and Grounding of Ship), the used hardening and fracture properties are summarized, explicitly presenting the material properties. Although some studies have attempted to employ new plasticity and fracture models, it is obvious that most still employed an ideal hardening rule such as perfect plastic or linear hardening and a simple shear fracture criterion with an assumed value of failure strain. HSE (2001) presented pioneering study results regarding the temperature dependency of material strain hardening at various levels of temperature, but did not show strain rate hardening at intermediate or high strain rate ranges. Nemat-Nasser and Guo (2003) carried out fully coupled tests for DH-36 steel: strain hardening, strain rate hardening, and temperature hardening and softening at multiple steps of strain rates and temperatures. The main goal of this paper is to provide the theoretical background for strain and strain rate hardening. In addition, it presents the procedure and methodology needed to derive the material constants for the static hardening constitutive equations of Ludwik, Hollomon, Swift, and Ramberg-Osgood and for the dynamic hardening constitutive equations of power from Cowper-Symonds and Johnson-Cook.

Characteristics of Load-Settlement Behaviour for Embeded Piles Using Load-Transfer Mechanism (하중전이기법을 이용한 매입말뚝의 하중-침하 거동특성)

  • Oh, Se Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.51-61
    • /
    • 2001
  • A series of model tests and analyses by load transfer function were performed to study load-settlement behaviour with relative compaction ratio of soil and embeded depth of pile. In the model tests, embeded depth ratio(L/D) of pile were installed 15, 20, 25 and relative compaction of soil(RC) is 85%, 95% and then cement were injected at around perimeter of pile. For analysis of embedded pile, the paper were compared results of model tests with analysis results by Vijayvergiya model and Castelli model, Gwizdala model of elastic plasticity-perfect plastic model and then the fitness load transfer mechanism was proposed to predict load-settlement behaviour of embeded pile. The analysis results of predicted bearing capacity by load transfer function, ultimate bearing capacity of embeded pile were approached to measured value and behaviour of initial load-settlement curve were estimated that load transfer function by Castelli were similar to measured value. The result of axial load analysis of bored pile shows that skin friction estimated by load transfer mechanism is investigated more a little than that of measured values.

  • PDF

Nonlinear Analysis of RC Shell Structures Including Creep and Shrinkage Effects (크리프와 건조수축을 고려한 RC쉘 구조물의 비선형 해석)

  • 정진환;한충목;조현영
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.181-188
    • /
    • 1993
  • In this study, a numerical method for the material nonlinear analysis of reinforced concrete shell structures including the time dependent effects due to creep and shrinkage is developed. Degenerate shell elements with the layered approach are used. The perfect or strain hardening plasticity model in compression and the linearly elastic model in tension until cracking for concrete are employed. The reinforcing bars are considered as a steel layer of equivalent thickness. Each :steel layer has an uniaxial behaviour resisting only the axial force in the bar direction. A bilinear idealization is adopted to model elasto-plastic stress-strain relationships. For the nonlinear anaysis, incremental load method combined with unbalanced load iterations for each load increment is used. To include time dependent effects of concrete, time domain is divided into several time steps which may have different length. Some numerical examples are presented to study the validity and applicability of the present method. The results are compared with experimental and numerical results obtained by other investigator.

Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns (강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.291-298
    • /
    • 2017
  • The objective of the present study is to evaluate the cyclic flexural behavior of a hybrid H-steel-reinforced concrete (HSRC) beam at the connection with a H-steel column. The test parameter investigated was the configuration of dowel bars at the joint region of the HSRC beam. The HSRC beam was designed to have plastic hinge at the end of the H-steel beam rather than the RC beam section near the joint. All specimens showed a considerable ductile behavior without a sudden drop of th applied load, resulting in the displacement ductility ratio exceeding 4.6, although an unexpected premature welding failure occurred at the flanges of H-steel beams connecting to H-steel column. The crack propagation in the RC beam region, flexural strength, and ductility of HSRC beam system were insignificantly affected by the configuration of dowel bars. The flexural strength of HSRC beam system governed by the yielding of H-steel beam could be conservatively evaluated from the assumption of a perfect plasticity state along the section.

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

THE HISTOLOGIC STUDY OF BONE HEALING AFTER HORIZONTAL RIDGE AUGMENTATION USING AUTO BLOCK BONE GRAFT (자가골 블럭 이식을 이용한 수평골 증강술시 이식골의 치유)

  • Oh, Jae-Kwen;Choi, Byung-Jun;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.207-215
    • /
    • 2009
  • Purpose: The aim of the present study is to evaluate the long term bone healing after horizontal ridge augmentation using auto block bone graft for implant installation timing. Materials and Methods: Five Beagle dogs(which were 14 months old and weighted approximately 10kg). In surgery 1(extraction & bone defect), premolars(P2, P3,P4) were extracted and the buccal bone plate was removed to create a horizontally defected ridge. After three months healing, in surgery 2(ridge augmentation). Auto block bone grafts from the mandibular ramus were used in filling the bone defects were fixed with stabilizing screws. The following fluorochrome labels were given intravenously to the beagle dogs: oxytetracycline 1week after the surgery, alizarin red 4 weeks after the surgery, calcein blue 8 weeks after the surgery. The tissue samples were obtained from the sacrificed dogs of 1, 4, 8, 12, 16 weeks after the surgery. Non-decalcified sections were prepared by resin embedding and microsection to find thickness of $10{\mu}m$ for the histologic examination and analysis. Results: 1. We could achieve the successful reconstruction of the horizontal bone defect by auto block bone graft. The grafted bone block remained stable morohologically after 16 weeks of the surgery. 2. In the histologic view. We observed osteoid tissue from the sample $4^{th}$ week sample and active capillary reconstruction in the grafted bone from the $12^{th}$ week sample. Healing procedures of auto bone grafts were compared to that of the host bone. 3. Bone mineralization could be detected from the $8^{th}$ week sample. 4. Fluorochrome labeling showed active bony changes and formation at the interface of the host bone and the block graft mainly. Bony activation in the grafted bone could be seen from the $4^{th}$ week samples. Conclusions: Active bone formation and remodeling between the grafted bone and host bone can be seen through the revascularization. After the perfect adhesion to host bone, Timing of successful implant installation can be detected through the ideal ridge formation by horizontal ridge augmentation.

Nonlinear Analysis of Nuclear Reinforced Concrete Containment Structures under Accidental Thermal Load and Pressure (온도 및 내압을 받는 원자로 철근콘크리트 격납구조물의 비선형해석)

  • Oh, Byung Hwan;Lee, Myung Gue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.403-414
    • /
    • 1994
  • Nonlinear analysis of RC containment structure under thermal load and pressure is presented to trace the behaviour after an assumed LOCA. The temperature distribution varying with time through the wall thickness is determined by transient finite element analysis with the two time level scheme in time domain. The layered shell finite elements are used to represent the containment structures in nuclear power plants. Both geometric and material nonlinearities are taken into account in the finite element formulation. The constitutive relation of concrete is modeled according to Drucker-Prager yield criteria in compression. Tension stiffening model is used to represent the tensile behaviour of concrete including bond effect. The reinforcing bars are modeled by smeared layer at the location of reinforcements accounting elasto-plastic axial behaviors. The steel liner model under Von Mises yield criteria is adopted to represent elastic-perfect plastic behaviour. Geometric nonlinearity is formulated to consider the large displacement effect. Thermal stress components are determined by the initial strain concept during each time step. The temperature differential between any two consecutive time steps is considered as a load incremental. The numerical results from this study reveal that nonlinear temperature gradient based on transient thermal analysis will produces excessive large displacement. Nonlinear behavior of containment structures up to ultimate stage can be traced reallistically. The present study allows more realistic analysis of concrete containment structures in nuclear power plants.

  • PDF