• Title/Summary/Keyword: Perfect Nonlinear Dynamic Analysis

Search Result 7, Processing Time 0.015 seconds

New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading

  • Sophianopoulos, Dimitris S.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.397-416
    • /
    • 2000
  • The present study deals with the nonlinear dynamics and stability of autonomous dissipative either imperfect potential (limit point) systems or perfect (bifurcational) non-potential ones. Through a fully nonlinear dynamic analysis, performed on two simple 2-DOF models corresponding to the classes of systems mentioned above, and with the aid of basic definitions of the theory of nonlinear dynamical systems, new important phenomena are revealed. For the first class of systems a third possibility of postbuckling dynamic response is offered, associated with a point attractor on the prebuckling primary path, while for the second one the new findings are chaos-like (most likely chaotic) motions, consecutive regions of point and periodic attractors, series of global bifurcations and point attractor response of always existing complementary equilibrium configurations, regardless of the value of the nonconservativeness parameter.

Nonlinear Dynamic Lateral Buckling Behavior of a Grid Structures (격자 구조물의 비선형 동적 측면 충격해석)

  • Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Hong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.254-260
    • /
    • 2000
  • The spacer grid is one of the main structural components in fuel assembly, which supports the fuel rods, guides cooling water, and protects the fuel assembly from the external impact load such as earthquakes. The nonlinear dynamic impact analysis is conducted by using the finite element code ABAQUS/Explicit. Boundary condition for dynamic analysis is well applied to the test condition. Simulation results also similarly predict the local buckling phenomena. In addition to the buckling parameter, the local buckling cause is examined by both simulation and test method. It is found to correspond well with the test results. Impact tests are also carried out for some specimens of the spacer grid in order to compare the results between the test and the simulation. This test is accomplished by a free fall dummy weight onto the specimen. From this test, only the uppermost and lowermost layers of the multi-cell are buckled, which implies the local buckling at the weakest point of the grid structure.

  • PDF

Nonlinear dynamic analysis of RC frames using cyclic moment-curvature relation

  • Kwak, Hyo-Gyoung;Kim, Sun-Pil;Kim, Ji-Eun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.357-378
    • /
    • 2004
  • Nonlinear dynamic analysis of a reinforced concrete (RC) frame under earthquake loading is performed in this paper on the basis of a hysteretic moment-curvature relation. Unlike previous analytical moment-curvature relations which take into account the flexural deformation only with the perfect-bond assumption, by introducing an equivalent flexural stiffness, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end, which accounts for more than 50% of the total deformation. The advantage of the proposed relation, compared with both the layered section approach and the multi-component model, may be the ease of its application to a complex structure composed of many elements and on the reduction in calculation time and memory space. Describing the structural response more exactly becomes possible through the use of curved unloading and reloading branches inferred from the stress-strain relation of steel and consideration of the pinching effect caused by axial force. Finally, the applicability of the proposed model to the nonlinear dynamic analysis of RC structures is established through correlation studies between analytical and experimental results.

Robust Current Tracking Control of Switched Reluctance Motors (Switched Reluctance Motor의 견실한 전류추적 제어기 설계)

  • Kim, Chang-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.218-228
    • /
    • 2001
  • The switched reluctance motor(SRM) has been increasingly used in high-performance servo applications such as electric vehicles, aircraft, and direct-drive robots. The dynamic equations of SRMs are, however, highly nonlinear and this makes it difficult to control SRMs with high performance. In this paper, we propose a new robust current tracking controller for SAMs which can compensate the nonlinear characteristics of SRM(i.e., back-emf and inductance) completely and hence shows perfect tracking performance even with an arbitrary small current control loop gain. Furthermore, even in case that there exist some model uncertainties, our current controller guarantees that the stator currents can track the reference current commands with sufficiently small tracking errors. In order to justify our work, we present the tracking performance analysis and some simulation results.

  • PDF

Dynamic Characteristics of Reinforced concrete axisymmetric shell with shape imperfection (형상불완전을 갖는 철근 콘크리트 축대칭 쉘의 동적 특성)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.151-159
    • /
    • 2000
  • Dynamic loading of structures often causes excursions of stresses will into the inelastic range and the influence of geometry changes on the response is also significant in may cases. In general , the shell structures designed according to quasi-Static analysis may collapse under condition of dynamic loading. Therefore, for a more realistic prediction on the lad carrying capacity of these shell. both material and geometric nonlinear effects should be considered. In this study , the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a Total Lagrangian formulation. the reinforcing bars are modeled by the equivalent steel layer at the location of reinforcements, and Von Mises yield criteria is adopted for the steel layer behavior. Also, Drucker-Prager yield criteria is applied for the behavior of concrete. the shape imperfection of dome is assumed as 'dimple type' which can be expressed Wd1=Wd0(1-(r-a)m)n while the shape imperfection of wall is assumed as sinusoidal curve which is Wwi =Wwo sin(n $\pi$y/l). In numerical test, three cases of shape imperfection of 0.0 -5.0cm(opposite direction to loading ; inner shape imperfection)and 5cm (direction to loading : outward shape imperfection) and thickness of steel layer determined by steel ratio of 0,3, and 5% were analyzed. The effect of shape imperfection and steel ratio and behavior characteristics of perfect shape shell and imperfect shape shell are identified through analysis of above mentioned numerical test. Dynamic behaviors of dome and wall according toe combination of shape imperfection and steel ratio are also discussed in this paper.

  • PDF

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.

Radian of the vault influencing the seismic performances of straight wall arch underground structures

  • Ma, Chao;Lu, Dechun;Qi, Chengzhi;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.637-649
    • /
    • 2021
  • Great efforts have been conducted to investigate the seismic performances of the arch and rectangular underground structures, however, the differences between seismic responses of these two types of underground structures, especially the vault radian influencing the seismic responses of arch structures are not clarified. This paper presents a detailed numerical investigation on the seismic responses of arch underground structures with different vault radians, and aims to illustrate the rule that vault radian affects the seismic responses of underground structures. Five arch underground structures are built for nonlinear soil-structure interaction analysis. The internal forces of the structural components of the underground structures only under gravity are discussed detailedly, and an optimum vault radian for perfect load-carrying functionality of arch underground structures is suggested. Then the structures are analyzed under seven scaled ground motions, amounting to a total of 35 dynamic calculations. The numerical results show that the vault radian can have beneficial effects on the seismic response of the arch structure, compared to the rectangular underground structures, causing the central columns to suffer smaller axial force and horizontal deformation. The conclusions provide some directive suggestions for the seismic design of the arch underground structures.