• Title/Summary/Keyword: Percolated water

Search Result 41, Processing Time 0.028 seconds

Effects of Fly Ash on Heavy Metal Contents in Percolated Water of Paddy Soil (석탄회 시용이 논 토양수중의 중금속성분 용출에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.236-242
    • /
    • 1996
  • This study was conducted to investigate the changes of heavy metals in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively. In cultivated plot, the contents of Fe in percolated water increased gradually during the cultivation. But there was no sharp difference of Fe contents in fly ash treated plots. The contents of Mn in percolated water increased gradually during the cultivation and was high in the cultivated plot. But difference in the contents of Mn among plots not clear. The contents of Zn in percolated water was highest during 20-25 days in the cultivation, thereafter decreased gradually. The fly ash did not cause to increase the contents of Zn in percolated water. The contents of Cu in percolated water decreased through the cultivation. Fly ash treatment did not cause to increase the contents of Cu in percolated water. The contents of Pb in percolated water decreased gradually over the cultivation. Fly ash treatment did not largely influence to Pb percolation. In mid-July. Pb did not almost appeared in percolated water. The contents of Cd was highest about 15 days of the transplant, thereafter decreased gradually. After 40 day of the cultivation, leach of Cd stopped. When fly ashes were applied in paddy soil, the contents of heavy metals in percolated water was not so much compared with control plot. It seems that originally low contents of heavy metals in fly ash and decrease in solubility of heavy metals in a relatively high soil pH make it possible to use fly ash as a soil conditioner.

  • PDF

Effects of Fly Ash on Components in Percolated Water and Rice Growth (석탄회 처리가 논 토양성분의 용탈과 수도생육에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.226-235
    • /
    • 1996
  • This pot experiment was conducted to investigate the changes of leaching in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively in greenhouse. pH in percolated water was higher in non cultivated plot than in cultivated plot. pH of the fly ash treated plot was higher than that of the control plot. pH in the cultivated plot decreased gradually during the cultivation. The contents of $NH_4-N$, $NO_3-N$ and K in percolated water decreased rapidly after mid-July, and was very low in the cultivated plot. Over the cultivation time, P contents in percolated water was very low. $SiO_2$, contents in percolated water decreased rapidly after June. Na contents in percolated water was highest in mid-June and then decreased gradually. In the cultivated plot, Ca contents in percolated water was higher than that in the control plot. During the cultivation, Ca contents in percolated water decreased gradually. But, in later-term of cultivation. Ca contents in percolated water was relatively Mgh. Mg contents in percolated water decreased after mid-July, but decreased continuously till the later-term of cultivation. EC in the percolated water was highest in mid-June. and then decreased gradually. EC of fly ash treated plot was higher than that of the control plot. The soil pH was increased and phosphate content in the soil was accumulated very high by application of fly ashes in paddy field after rice cultivation. Fly ash treatment did not increase the contents of elements in percolated water compared with the control plot. The difference between anthracite and bituminous fly ash was not so clear. Fly ash treatment, inhibited early growth and tillering. But, in later-term of cultivation, the inhibition effects of nonproductive tillering was expected. Fly ash treatment will be good if it was applicated after last year's harvest because leaching would happen over fallowing time. Contents of inorganic elements in percolated water of fly ash treated plot was not so high compared with that in the control plot.

  • PDF

Evaluation of Percolated Water Quality of Paddy Fields Using Nonparametric Test (비모수검정을 이용한 논침투수 수질의 평가)

  • Oh, Seung-Young;Kim, Jin-Soo;Oh, Kwang-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.99-110
    • /
    • 2005
  • Characteristics of concentrations of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) pollutant in percolated water at four paddy field sites (Soro, Odong, Munui, and Boeun) were investigated by a nonparametric test. Percolation rate measurement and percolated water sampling were taken during irrigation periods at $5{\sim}10$ day intervals. The normality of percolation rate and pollutant concentrations were examined using histogram, boxplot, and the Kolmogorov-Smirnov (K-S) test. Pollutant concentrations in percolated water showed positively skewed distribution. The median concentrations of pollutant were 1.91 mg/L for TN, 0.021 mg/L for TP, and 6.6 mg/L for COD, which were lower than its arithmetic mean concentrations by $35\%$ for TN, $36\%$ for TP, and $13\%$ for COD. The median concentrations of TN and TP differed significantly among sample sites according to the Kruskal-Wallis test. However, median concentrations were not significantly different among month except for TN and TP of Soro and COD of Odong. The percolation load of pollutants during irrigation periods in the study area were estimated at $3.12{\sim}7.75\;kg/ha$ for TN, $0.033{\sim}0.155\;kg/ha$ for TP, and 10.7 kg/ha for COD, which were much lower than respective values reported in Japan.

Fabrication and Response Characteristics of Multi-walled Carbon Nanotube Film Humidity Sensor (다중벽 탄소나노튜브 습도센서의 제작과 응답특성)

  • Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.39-43
    • /
    • 2014
  • This paper represents a highly porous MWCNT film electrode with interconnected open pores and demonstrated the possibility of using an MWCNT network film as the top electrode for polyimide capacitive humidity sensors. Polyimide humidity sensors with MWCNT electrodes exhibited about 6 times faster response than equivalent Cr electrode sensors. This result may be due to their percolated pore structures, which make water molecules accessible to all polyimide surfaces. The much faster response times of MWCNT electrode sensors is attributed to the percolated pore network, which allows more water molecules to be accessible to polyimide surfaces.

  • PDF

Leaching Characteristics of the Endocrine Disruptor-suspected Pesticides in Upland Soil (내분비계장애추정농약의 밭토양 중 용탈 특성)

  • Noh, Hyun Ho;Lee, Jae Yun;Lee, Kwang Hun;Park, Hyo Kyoung;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.168-177
    • /
    • 2013
  • This experiment was carried out to estimate leaching potential of thirteen endocrine disruptor-suspected pesticides in upland soils using soil columns (5 cm I.D. ${\times}$ 35 cm H.) packed with soil A (sandy loam) and soil B (loam). When 12.6 mL of water, average precipitation in Cheongju area during the period from June to August, 2001-2010, was percolated through soil column packed with soil A every day for 21 days, no pesticides were detected from leachate, with the exception of metribuzin which was detected with negligible. Also, when 2 L of water was percolated consecutively five times through soil columns packed with soil A and B, irrespective of soil types, cypermethrin, endosulfan, fenvalerate, parathion and trifluralin, which were very low water solubilities and high soil $K_{oc}s$, were not detected from leachate and were distributed mostly in the depth of 0-5 cm, representing that water solubility and soil $K_{oc}$ are major contributing factors to their leaching behavior. Despite high average leaching rates in carbaryl and methomyl, actual possibilities of ground water contamination in the agricultural environment by them would be very low, considering that the negligible amount of pesticide was percolated through a lysimeter with an undisturbed soil core simulating the field conditions, while most of pesticide was percolated through a soil column with the disturbed soil profile.

Pollutant concentrations in Experimental Paddy Plots with Different Fertilizer Application Rates (시비조건의 차이에 따른 시험군 논에서의 오염물질의 농도)

  • Cho, Jae-Won;Kim, Jin-Soo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.473-476
    • /
    • 2002
  • The effect of fertiltzer application on ponded and percolation water in rice paddy were investigated at the experimental plots during irrigation period. We laid out three experimental plots such as 150% Excessive, 100% Standard and 70% Reduced. The concentration of T-N and T-P in ponded water were increased rapidly after application. The concentration of T-N and COD in percolated water increased with fertilizer application rates, while T-P concentration were almost constant.

  • PDF

Analysis on the Seepage Behavior of Organic Contaminants in Soil (토양에서 유기화합물질의 침투 거동 연구)

  • Lee, Jun Ho;Han, Sun Hyang;Park, Kap Song
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.489-496
    • /
    • 2013
  • Ground water underlying soil is vulnerable to pollution by organic chemicals through their percolation through the soil system. This study was conducted to provide information on the seepage behavior of organic chemical contaminants in clay, silty and sandy soils. Chloroform, 1,1,1-trichloroethane and trichloroethylene are readily transported through the soil; their percolated mass were 4.6-19.2 percent of the total mass applied. Tetrachloroethylene, 1,2-dichlorobenzene and 1,3-dichlorobenzene were retarded by soils due to sorption. Between 0.6 and 4.8 percent of the material applied to the surface percolated within the experimental period. Carbon tetrachloride was attenuated considerably by passage through soils. Only 0.1-0.4 percent of the mass reached the groundwater. Significant degradation of bromoform was observed. Apparent breakdown of intermediates of the brominated compounds were detected. Transformations of the brominated compounds appear to be the result of both biological and chemical processes. The effect of soil type on the mobility of organic chemical contaminants was considerable. The organic contaminants moved faster in sandy soil than in either clay or silty soils.

Quantitative Determination of Organic Yield by Continuous Percolation Processes of Bio-wastes at K Composting Plant

  • Seo, Jeoung-Yoon;Jager, Johannes
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Percolation is the important process of extracting the soluble constituents of a fine mesh, porous substance by passage of a liquid through it. In this study, bio-wastes were percolated under various conditions through continuous percolation processes, and the energy potential of percolate was evaluated. The representative bio-wastes from the K composting plant in Darmstadt, Germany were used as the sample for percolation. The central objective of this study was to determine the optimal amount of process water and the optimum duration of percolation through the bio-wastes. For economic reasons, the retention time of the percolation medium should be as long as necessary and as short as possible. For the percolation of the bio-wastes, the optimal percolation time was 2 hr and maximum percolation time was 4 hr. After 2 hr, more than two-thirds of the organic substances from the input material were percolated. In the first percolation process, the highest yields of organic substance were achieved. The best percolation of the bio-wastes was achieved when the process water of 2 L for the first percolation procedure and then the process water of 1.5 L for each further percolation procedure for a total 8 L for all five procedures were used on 1,000 g fresh bio-waste. The gas formation potentials of 0.83 and $0.96Nm^3/ton$ fresh matter (FM) were obtained based on the percolate from 1 hr percolation of 1,000 g bio-waste with the process water of 2 L according to the measurement of the gas formation in 21 days (GB21). This method can potentially contribute to reducing fossil fuel consumption and thus combating climate change.

Prediction of Nutrient Loading from Paddy Fields (II) - Model Application - (논에서의 영양물질 배출량 추정 (II) - 모형의 적용 -)

  • 김현수;정상옥;김진수;오승영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.106-115
    • /
    • 2002
  • The objective of this study was to evaluate the GLEAMS-PADDY model by applying it to estimate nutrients loading from paddy-field areas. Field data from Soro region of Chungbuk province during May to September 1999 were used for model application. Field data collected include the amounts of rainfall, irrigation water, drainage water, ET, and Percolation in hydrology Part. T-N and T-P concentrations in the rain water, irrigation water, ponded water, drainage water and percolated water were measured. The comparisons of observed and simulated water balance components and nutrient concentrations showed reasonably good agreements and the GLEAMS-PADDY model may be used to simulate nutrients loading from paddy fields. Futher research was suggested to include the erosion submodel in the GLEAMS-PADDY model to better simulate the nutrient behavior. In addition, the pesticide submodel also recommended to be included in order to simulate the various pesticide applied in paddy fields.

Studies on the Leaching of the Constituents in Paddy Soil -III. Effects of Rice Straw on the Leaching of the Constituents in Paddy Soil (논 토양성분(土壤成分)의 용탈(溶脫)에 관(關)한 연구(硏究) -III. 논 토양(土壤) 화학성분(化學成分)의 용탈(溶脫)에 미치는 볏짚의 영향(影響))

  • Kim, Kwang-Sik;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.311-317
    • /
    • 1983
  • These studies were carried out to investigate the effects of rice straw on the leaching of chemical constituents in paddy soil. Rice plants were cultured in paddy soil to which rice straw was applied and then chemical properties of percolated water were analysed. The results were as follows. The leaching of calcium and magnesium was affected by rice straw application in the early stages of plant growth and by rice root activity in the late stages. The application of the straw promoted the reduction of the soil followed by increasing the leaching of iron and manganese. The leaching of potassium, ammonium-nitrogen and chloride was not due to the application of rice straw and the leaching of carbon dioxide increased with the application of rice straw, at the same time chemical properties seemed to be affected by rice root activity. Generally, cation and anion leached in the percolated water were equivalent. Calcium, magnesium, Fe as cation and $HCO_3$, $SO_4{^{-2}}$ as anion were important constituents in the percolated water from paddy soil.

  • PDF