• 제목/요약/키워드: Perceptron Sensor

검색결과 30건 처리시간 0.025초

MLP분류법을 적용한 가스분류기능의 칩 설계 및 응용 (Chip design and application of gas classification function using MLP classification method)

  • 장으뜸;서용수;정완영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.309-312
    • /
    • 2001
  • A primitive gas classification system which can classify limited species of gas was designed and simulated. The 'electronic nose' consists of an array of 4 metal oxide gas sensors with different selectivity patterns, signal collecting unit and a signal pattern recognition and decision Part in PLD(programmable logic device) chip. Sensor array consists of four commercial, tin oxide based, semiconductor type gas sensors. BP(back propagation) neutral networks with MLP(Multilayer Perceptron) structure was designed and implemented on CPLD of fifty thousand gate level chip by VHDL language for processing the input signals from 4 gas sensors and qualification of gases in air. The network contained four input units, one hidden layer with 4 neurons and output with 4 regular neurons. The 'electronic nose' system was successfully classified 4 kinds of industrial gases in computer simulation.

  • PDF

신경회로망을 이용한 레이저 용접 내부결함 모니터링 방법 (Monotoring Secheme of Laser Welding Interior Defects Using Neural Network)

  • 손중수;이경돈;박상봉
    • 한국레이저가공학회지
    • /
    • 제2권3호
    • /
    • pp.19-31
    • /
    • 1999
  • This paper introduces the monitoring scheme of laser welding quality using neural network. The developed monitoring scheme detects light signal emitting from plasma formed above the weld pool with optic sensor and DSP-based signal processor, and analyzes to give a guidance about the weld quality. It can automatically detect defects of laser weld and further give an information about what kind of defects it is, specially partial penetration and porosity among the interior defects. Those could be detected only by naked eyes or X-ray after welding, which needs more processes and costs in mass production. The monitoring scheme extracts four feature vectors from signal processing results of optical measuring data. In order to classify pattern for extracted feature vectors and to decide defects, it uses single-layer neural network with perceptron learning. The monitoring result using only the first feature vector shows confidence rate in recognition of 90%($\pm$5) and decides whether normal status or defects status in real time.

  • PDF

다중 센서 데이터와 다층 퍼셉트론을 활용한 젖소의 유방염 진단 예측 (Prediction of dairy cow mastitis with multi-sensor data using Multi-Layer Perceptron(MLP))

  • 송혜원;박기철;박재화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.788-791
    • /
    • 2020
  • 낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.

Motion Recognition for Kinect Sensor Data Using Machine Learning Algorithm with PNF Patterns of Upper Extremities

  • Kim, Sangbin;Kim, Giwon;Kim, Junesun
    • The Journal of Korean Physical Therapy
    • /
    • 제27권4호
    • /
    • pp.214-220
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the availability of software for rehabilitation with the Kinect sensor by presenting an efficient algorithm based on machine learning when classifying the motion data of the PNF pattern if the subjects were wearing a patient gown. Methods: The motion data of the PNF pattern for upper extremities were collected by Kinect sensor. The data were obtained from 8 normal university students without the limitation of upper extremities. The subjects, wearing a T-shirt, performed the PNF patterns, D1 and D2 flexion, extensions, 30 times; the same protocol was repeated while wearing a patient gown to compare the classification performance of algorithms. For comparison of performance, we chose four algorithms, Naive Bayes Classifier, C4.5, Multilayer Perceptron, and Hidden Markov Model. The motion data for wearing a T-shirt were used for the training set, and 10 fold cross-validation test was performed. The motion data for wearing a gown were used for the test set. Results: The results showed that all of the algorithms performed well with 10 fold cross-validation test. However, when classifying the data with a hospital gown, Hidden Markov model (HMM) was the best algorithm for classifying the motion of PNF. Conclusion: We showed that HMM is the most efficient algorithm that could handle the sequence data related to time. Thus, we suggested that the algorithm which considered the sequence of motion, such as HMM, would be selected when developing software for rehabilitation which required determining the correctness of the motion.

힘 센서를 이용한 접촉감지부에서 신경망기반 인간의 접촉행동 인식 (Human Touching Behavior Recognition based on Neural Network in the Touch Detector using Force Sensors)

  • 류정우;박천수;손주찬
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권10호
    • /
    • pp.910-917
    • /
    • 2007
  • 인간-로봇 상호작용에서 접촉은 인간에게 정서적 안정을 줄 수 있는 중요한 상호작용 방법 중 하나이다. 그러나 지금까지 음성과 영상을 기반으로 인간-로봇 상호작용이 이루어지는 연구가 대부분이었다. 본 논문에서는 접촉을 통한 인간-로봇 상호작용을 위해 인간의 접촉행동을 인식하는 방법을 제안한다. 제안한 인식 방법에서 인식 과정은 전처리 단계와 인식 단계로 나뉜다. 전처리 단계는 접촉감지부에서 생성된 데이타로부터 인식할 수 있는 특징들을 계산하는 단계이고 인식 단계는 인식기를 통해 접촉행동으로 분류하는 단계이다. 접촉감지부는 힘 센서인 FSR 센서를 이용하여 제작하였고 인식기는 신경망 모델인 다층퍼셉트론을 사용하였다. 실험은 남자 여섯 명에 의해 생성된 세 가지 접촉행동; '때리다', '쓰다듬다', '간질이다' 데이타를 가지고, 사람별로 인식기를 생성하여 cross-validation으로 평가한 결과 82.9%의 평균인식률을 보였고, 사람별 구분 없이 한 개의 인식기로 실험한 결과는 74.5%의 평균 인식률을 보였다.

벌크 트레일러의 순간 및 누적 분말 배출량 추정을 위한 신경망 모델 성능 비교 (Performance Comparison of Neural Network Models for the Estimation of Instantaneous and Accumulated Powder Exhausts of a Bulk Trailer)

  • 이창준;이정근
    • 센서학회지
    • /
    • 제32권3호
    • /
    • pp.174-179
    • /
    • 2023
  • Bulk trailers, used for the transportation of powdered materials, such as cement and fly ash, are crucial in the construction industry. The speedy exhaustion of powdered materials stored in the tank of bulk trailers is relevant to improving transportation efficiency and reducing transportation costs. The exhaust time can be reduced by developing an automatic control system to replace the manual exhaust operation. The instantaneous or accumulated exhausts of powdered materials must be measured for automatic control of the bulk trailer exhaust system. Accordingly, we previously proposed a recurrent neural network (RNN) model that estimated the instantaneous exhaust based on low-cost pressure sensor signals without an expensive flowmeter for powders. Although our previous study utilized only an RNN model, models such as multilayer perceptron (MLP) and convolutional neural network (CNN) are also widely utilized for time-series estimation. This study compares the performance of three neural network models (MLP, CNN, and RNN) in estimating instantaneous and accumulated exhausts. In terms of the instantaneous exhaust estimation, the difference in the performance of neural network models was insignificant (that is, 8.64, 8.62, and 8.56% for the MLP, CNN, and RNN, respectively, in terms of the normalized root mean squared error). However, in the case of the accumulated exhaust, the performance was excellent in the order of CNN (1.67%), MLP (2.03%), and RNN (2.20%).

Comparison of Artificial Neural Networks for Low-Power ECG-Classification System

  • Rana, Amrita;Kim, Kyung Ki
    • 센서학회지
    • /
    • 제29권1호
    • /
    • pp.19-26
    • /
    • 2020
  • Electrocardiogram (ECG) classification has become an essential task of modern day wearable devices, and can be used to detect cardiovascular diseases. State-of-the-art Artificial Intelligence (AI)-based ECG classifiers have been designed using various artificial neural networks (ANNs). Despite their high accuracy, ANNs require significant computational resources and power. Herein, three different ANNs have been compared: multilayer perceptron (MLP), convolutional neural network (CNN), and spiking neural network (SNN) only for the ECG classification. The ANN model has been developed in Python and Theano, trained on a central processing unit (CPU) platform, and deployed on a PYNQ-Z2 FPGA board to validate the model using a Jupyter notebook. Meanwhile, the hardware accelerator is designed with Overlay, which is a hardware library on PYNQ. For classification, the MIT-BIH dataset obtained from the Physionet library is used. The resulting ANN system can accurately classify four ECG types: normal, atrial premature contraction, left bundle branch block, and premature ventricular contraction. The performance of the ECG classifier models is evaluated based on accuracy and power. Among the three AI algorithms, the SNN requires the lowest power consumption of 0.226 W on-chip, followed by MLP (1.677 W), and CNN (2.266 W). However, the highest accuracy is achieved by the CNN (95%), followed by MLP (76%) and SNN (90%).

선삭공작을 위한 지능형 실시간 공구 감시 시스템에 관한 연구 (A Study on Intelligent On-line Tool Conditon Monitoring System for Turning Operations)

  • 최기홍;최기상
    • 한국정밀공학회지
    • /
    • 제9권4호
    • /
    • pp.22-35
    • /
    • 1992
  • In highly automated machining centers, intelligent sensor fddeback systems are indispensable on order to monitor their operations, to ensure efficient metal removal, and to initate remedial action in the event of accident. In this study, an on-line tool wear detection system for thrning operations is developed, and experimentally evaluated. The system employs multiple sensors and the signals from these sensors are processed using a multichannel autoegressive (AR) series model. The resulting output from the signal processing block is then fed to a previously tranied artificial neural network (multiayered perceptron) to make a final decision on the state of the cutting tool. To learn the necessary input/output mapping for tool wear detection, the weithts and thresholds of the network are adjusted according to the back propagation (BP) method during off-line training. The results of experimental evaluation show that the system works well over a wide range of cutting conditions, and the ability of the system to detect tool wear is improved due to the generalization, fault-tolearant and self-ofganizing properties of the neural network.

  • PDF

Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구 (A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm)

  • 최지혜;김민승;이찬호;최정환;이정희;성태응
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.131-145
    • /
    • 2020
  • 산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.

딥러닝 기반의 수중 IoT 네트워크 BER 예측 모델 (Deep Learning based BER Prediction Model in Underwater IoT Networks)

  • 변정훈;박진훈;조오현
    • 융합정보논문지
    • /
    • 제10권6호
    • /
    • pp.41-48
    • /
    • 2020
  • 수중 IoT 네트워크에서 센서 노드는 지속적인 전력 공급이 어렵기 때문에 제한된 상황에서 소비 전력과 네트워크 처리량의 효율성이 매우 중요하다. 이를 위해 기존의 무선 네트워크에서는 SNR(Signal Noise Rate)과 BER(Bit Error Rate)의 높은 연관성을 기반으로 적응적으로 통신 파라미터를 선택하는 AMC(Adaptive Modulation and Coding) 기술을 적용한다. 하지만 본 논문의 실험 결과, 수중에서 SNR과 BER 사이의 상관 관계가 상대적으로 감소함을 확인하였다. 따라서 본 논문에서는 SNR과 함께 다중 파라미터를 동시에 사용하는 딥러닝 기반 BER 예측 모델(MLP, Multi-Layer Perceptron)을 적용한다. 제안하는 BER 예측 모델은 처리량이 가장 높은 통신 방법을 찾아낼 수 있고, 시뮬레이션 결과 85.2%의 높은 정확도와 네트워크 처리량은 기존 처리량보다 4.4배 높은 성능을 보여주는 우수한 성능을 확인하였다.