• Title/Summary/Keyword: Perceptron

Search Result 832, Processing Time 0.022 seconds

The Basic Design of High Speed Neural Network Filter for Application of Machine Tools Controller (공작기계 컨트롤러용 고속 신경망 필터의 기초설계)

  • 김진선;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.125-130
    • /
    • 2003
  • This Paper describes a Nonlinear adoptive noise canceller using Neural Network for Machine Tools Controller System. Back-Propagation Learning Algorithm based MLP (Multi Layer Perceptron)is used an adaptive filters. In this Paper. it assume that the noise of primary input in the adaptive noise canceller is not the same characteristic as that of the reference input. Experimental results show that the neural network base noise canceller outperforms the linear noise canceller. Especially to make noise cancel close to realtime, Primary Input is divided by Unit and each divided pan is processed for very short time than all the processed data are unified to whole data.

  • PDF

Sensitivity analysis of weights in multi-layer perceptron realizing continuous mappings

  • Choi, Chong-Ho;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1377-1382
    • /
    • 1990
  • In Multi-Layer Perceptron (MLP) which realizes continuous mappings, the output errors is directly affected by the weight errors which may be caused by the limited precision of digital or analog hardware in implementations. So, it is important to study the sensitivity due to the perturbation of connection weights between neurons. In this paper, we derive a sensitivity function to the statistical weight perturbations in MLP with differentiable activation functions. This sensitivity function can be regarded as an ensemble average of deterministic sensitivity measures due to the perturbations of weights. Hence, this sensitivity function can be used as the criteria for selecting weights with the minimum sensitivity among possible sets of connection weights in MLP. For the verification of the validity of the proposed sensitivity function, computer simulations have been performed and through the simulations we find good agreement between the theoretical and simulation results.

  • PDF

Isolated Word Recognition Algorithm Using Lexicon and Multi-layer Perceptron (단어사전과 다층 퍼셉트론을 이용한 고립단어 인식 알고리듬)

  • 이기희;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1110-1118
    • /
    • 1995
  • Over the past few years, a wide variety of techniques have been developed which make a reliable recognition of speech signal. Multi-layer perceptron(MLP) which has excellent pattern recognition properties is one of the most versatile networks in the area of speech recognition. This paper describes an automatic speech recognition system which use both MLP and lexicon. In this system., the recognition is performed by a network search algorithm which matches words in lexicon to MLP output scores. We also suggest a recognition algorithm which incorperat durational information of each phone, whose performance is comparable to that of conventional continuous HMM(CHMM). Performance of the system is evaluated on the database of 26 vocabulary size from 9 speakers. The experimental results show that the proposed algorithm achieves error rate of 7.3% which is 5.3% lower rate than 12.6% of CHMM.

  • PDF

Visualization of Multi Layer Perceptron Backpropagation Learning (다층 퍼셉트론 신경망의 역전파 학습 시각화)

  • Oh, Ju-Min;Choi, Yong-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.19-20
    • /
    • 2017
  • 인공지능이 사회적으로 대두되면서 많은 양의 관련 연구가 시작되고 있다. 본 논문에서는 다층 퍼셉트론 신경망에서 역전파 학습의 진행 과정을 시각화 하는 것을 목표로 하고 있다. 다층 퍼셉트론 신경망은 학습의 진행 과정과 그 방식은 잘 알려져 있으나 각 신경의 값이 어떻게 변화되어 가는 지는 눈에 보이지 않는다. 이러한 과정에 대해 시각화를 통해 값이 변하는 과정을 눈으로 쉽게 관찰할 수 있도록 하는 것이 이 논문의 목표이다. 본 연구결과는 향후 다층 퍼셉트론 신경망을 기반으로 하는 다른 모델의 시각화에 대한 기초자료로 활용될 수 있을 것이다.

  • PDF

Performance Comparison of Automatic Detection of Laryngeal Diseases by Voice (후두질환 음성의 자동 식별 성능 비교)

  • Kang Hyun Min;Kim Soo Mi;Kim Yoo Shin;Kim Hyung Soon;Jo Cheol-Woo;Yang Byunggon;Wang Soo-Geun
    • MALSORI
    • /
    • no.45
    • /
    • pp.35-45
    • /
    • 2003
  • Laryngeal diseases cause significant changes in the quality of speech production. Automatic detection of laryngeal diseases by voice is attractive because of its nonintrusive nature. In this paper, we apply speech recognition techniques to detection of laryngeal cancer, and investigate which feature parameters and classification methods are appropriate for this purpose. Linear Predictive Cepstral Coefficients (LPCC) and Mel-Frequency Cepstral Coefficients (MFCC) are examined as feature parameters, and parameters reflecting the periodicity of speech and its perturbation are also considered. As for classifier, multilayer perceptron neural networks and Gaussian Mixture Models (GMM) are employed. According to our experiments, higher order LPCC with the periodic information parameters yields the best performance.

  • PDF

A Machine Vision Algorithm for the Automatic Inspection of Inserts (인서트 자동검사를 위한 시각인식 알고리즘)

  • 이문규;신승호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.795-801
    • /
    • 1998
  • In this paper, we propose a machine vision algorithm for inspecting inserts which are used for milling and turning operations. Major defects of the inserts are breakage and crack on insert surfaces. Among the defects, breakages on the face of the inserts can be detected through three stages of the algorithm developed in this paper. In the first stage, a multi-layer perceptron is used to recognize the inserts being inspected. Edge detection of the insert image is performed in the second stage. Finally, in the third stage breakages on the insert face are identified using Hough transform. The overall algorithm is tested on real specimens and the results show that the algorithm works fairly well.

  • PDF

Improving effective Learning Performance of Kernel method (커널 메소드의 효과적인 학습 성능 향상)

  • 김은미;김수희;정태웅;이배호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.9-12
    • /
    • 2002
  • This paper proposes a dynamic moment algorithm to control oscillaion before the convergence of the KR(Kernel Relaxation). The proposed dynamic moment algorithm can be controlled to convergence speed and performance according to the change of the dynamic moment by teaming training. we used SONAR data that is a neural network classifier standard evaluation data in order to do impartial performance evaluation. The proposed algorithm has been applied to the KP (kernel perceptron), KPM(kernel perceptron with margin) and KLMS(kernel lms) as the kernel method presented recently. The simulation results of proposed algorithm have better the convergence performance than those using none and static moment.

  • PDF

The Classification of Tool Wear States Using Pattern Recognition Technique (패턴인식기법을 이용한 공구마멸상태의 분류)

  • Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

Design and Performance Evaluation of a Neural Network based Adaptive Filter for Application of Digital Controller (디지털 제어기용 적응 신경망 필터의 설계 및 성능평가)

  • 김진선;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.345-351
    • /
    • 2004
  • This Paper describes a nonlinear adaptive noise filter using neural network for digital controller system. Back-Propagation Learning Algorithm based MLP (Multi Layer Perceptron)is used an adaptive filters. In this paper. it assume that the noise of primary input in the adaptive noise canceller is not the same characteristic as that of the reference input. Experimental reaults show that the neural network base noise canceller outperforms the linear noise canceller. Especially to make noise cancel close to realtime, Primary input is divided by unit and each divided part is processed for very short time than all the processed data are unified to whole data.

  • PDF

Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network (인공신경망 기반의 기타 코드 분류 시스템 성능 비교)

  • Park, Sun Bae;Yoo, Do-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.