• Title/Summary/Keyword: Percent crop loss

Search Result 25, Processing Time 0.024 seconds

Studies on the Flowering and Maturity in Sesame (Sesamum indicum L.) IV. Effects of Foliage Clipping on the Seed Maturity (참깨의 개화.등숙에 관한 연구 IV. 적엽처리가 참깨의 등숙에 미치는 영향)

  • Lee, Jung-Il;Kang, Chul-Whan;Son, Eung-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.165-173
    • /
    • 1985
  • The objectives of the study were to investigate the effects of foliage clipping on photosynthesis and grain filling for branch and non branch types under the polyethylene film mulch and non mulch conditions in mono cropping and second cropping after barley in sesame (Sesamum indicum L.), and to improve poor grain filling at later flowering time utilizing these data. One thousand grain weight was more decreased in branch type than in non branch type, in polyethylene film mulch condition than in non mulch condition, and in second cropping after barley than in mono cropping by clipping lower part foliage. Twentyfive percent clipping of lower part foliage showed a little increase than no clipping. Matured grain rate also showed same tendency between branch and non branch type and between mono cropping and second cropping after barley as well as 1,000 grain weight except for polyethylene film mulch. Matured grain rate of 25% foliage clipping at 30 days after flowering in non branch type presented a little increase but decreased in branch type. Clipping of higher part leaves were so serious decrease of matured grain rate that higher part leaves at late maturing time have a major role in photosynthesis. Matured grain rate of foliage clipping at 10 days after flowering was decreased in all treatments. Chlorophyll content of higher part leaves at 50% lower part foliage clipping presented 39% increase compared to same positioned leaves of non treatment, and 66% increase by 50% higher part foliage clipping in lower part leaves. Photosynthetic activity was 58% more increased in 50% lower part foliage clipping than no clipping, but seriously decreased in 50% higher part foliage clipping. Therfore, photosynthates of remained lower part leaves could not only support their own demands, but also any contribution to translocation of photosynthates from source to sink at late maturing time. Harvest index was 28% increased in 25% lower part foliage clipping and 13% decreased in 50% higher part foliage clipping compared to no clipping. Leaf area was 48% increased in 50% lower part foliage clipping compared to the same positioned leaves of no clipping, and only 5% increased in higher part foliage clipping. Productivity by foliage clipping compared to non treatment, was highly decreased in branch type than in non branch type, in second cropping after barley than in mono cropping. Little difference was detected between polyethylene film mulch and non mulch conditions. Twenty five percentage of lower part foliage clipping on mono cropping of non branch type appeared 5% and 8% yield increase in each of polyethylene film mulch and non mulch conditions compared to no clipping, and all decreased in other treatments. Mean loss of productivity by foliage clipping at 10 days after flowering was serious than clipping at 30 days after flowering. As the result, contribution to photosynthesis of source at 10 days after flowering are larger than that at 30 days after flowering in sesame. Fifty percent lower part foliage clipping at 10 days after flowering showed so the most serious yield decrease that lower part leaves at that time were considered as the main role leaves for photosynthesis.

  • PDF

Varietal Responses of Ten Soybean(Glycine max L.) to Sulfur Dioxide Tolerance : A Comparison of Foliar Injuries and Yields in Relation to Physiological Properties of Leaves. (아황산가스에 대한 주요 콩 품종간의 내성 비교)

  • Park, Ki-Sun;Ku, Ja-Hyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.455-463
    • /
    • 1996
  • Studies were carried out to determine the effect of sulfur dioxide on leaf injury and yield of ten soybean cultivars. Plants were fumigated with 2.0 ppm of $SO_2$ for 4 or 8 h in a closed-top field chamber. In the comparison of foliar injury, Paldalkong and Eunhakong were more susceptible to $SO_2$ than Bogwangkong, Jangsukong, and Jangkeungkong. Correlations between chlorophyll contents, peroxidase activity, and stomatal resistance of leaves and foliar susceptibility were insignificant. However, significant correlations $(r=-0.611^{\ast})$ were found between superoxide dismutase activity and foliar injury rates. Dry weight, number of pods and total grains were significantly reduced by $SO_2$ fumigation but plant height, number of nods and weight of 100 grains were not affected. Yield reduction rates were higher in Eunhakong and Paldalkong than in Bogwangkong and Jangkeungkong. A liniar relationship was found between foliar injury rate and the percent crop loss with a significant coefficient of b=-1.17 in the susceptible cultivar of Paldalkong, but Bogwangkong, insusceptible cultivar, showed lower value of -0.165.

  • PDF

Mold Growth and Mycotoxin Contamination of Forages (조사료의 곰팡이 발생과 곰팡이독소 오염)

  • Sung, Ha-Guyn;Lee, Joung-Kyong;Seo, Sung;Lim, Dong-Cheul;Kim, Jong-Duk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.1
    • /
    • pp.77-88
    • /
    • 2010
  • In order to ensure good animal health and performance, it is essential to produce forages with high feeding value and good hygienic quality. However, huge amounts of forages consumed by ruminants are contaminated with mold prior to harvest or during storage as hay, straw or silage. These mold can grow in forages only when nutrients are available, correct temperature exist, oxygen is present, and unbound water is available. Fungal 'species can be divided into two groups: field fungi and storage fungi. Field fungi invade the forages while the crop is still in the field, require high moisture conditions, and are such as species of Fusarium, Alternaria, Clodosporium, Diplodia, Gibberrella and Helminthosporium. Storage fungi invade forages during storage and need less moisture than field fungi. These such as species of Aspergillus and Penicillium usually do not occur any problem before harvest. Mold growth can spoil the nutritional aspects of the forages and also results in secondary metabolites that are highly toxic to animal, humans and plants. Moldy feeds are less palatable and may reduce dry matter intake. This, in turn, leads to a reduction of nutrition intake, reducing weight gains or milk production. Performance losses of 5 to 10 percent are typical with moldy feeds. Mycotoxins are toxic substances produced by fungi (molds) growing on crops in the field or storages. While greater than 400 mycotoxins have been chemically identified, the biological or veterinary medical impact of only several mycotoxins is known. Mycotoxins have attracted considerable attention as potential causes for poor performance and health disorders in domestic livestock. They can be carcinogenic, hepatotoxic, hematotoxic, immunosuppressive, estrogenic, or mutagenic. So, feeding moldy forages has adverse effects on animal health and milk consumers. Also, this author reported that rice straw hay was contaminated mycotoxigenic fungi such as Penicillium roqueforti and Fusarium culmorum in Korea. Therefore, it is an urgent need to develop an improved post harvest storage method to reduce nutrient loss and mycotoxin contamination of forages, which will have a positive impact on human health.

Vulnerability Assessment of Soil Loss in Farm area to Climate Change Adaption (기후변화 적응 농경지 토양유실 취약성 평가)

  • Oh, Young-Ju;Kim, Myung-Hyun;Na, Young-Eun;Hong, Sun-Hee;Paik, Woen-Ki;Yoon, Seong-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.711-716
    • /
    • 2012
  • Due to the climate change in South Korea the annual total precipitation will increase by 17 percent by 2100. Rainfall is concentrated during the summer in South Korea and the landslide of farmland by heavy rain is expected to increase. Because regional torrential rains accompanied by a storm continue to cause the damage in farmland urgent establishment of adaptation plant for minimizing the damage is in need. In this study we assessed vulnerability of landslide of farmland by heavy rain for local governments. Temporal resolution is 2000 year and the future 2020 year, 2050 year, 2100 year via A1B scenario. Vulnerability of local government were evaluated by three indices such as climate exposure, sensitivity, adaptive capacity and each index is calculated by selected alternative variable. Collected data was normalized and then multiplied by weight value that was elicited in delphi investigation. Current vulnerability is concentrated in Jeju island and Gyeongsangnam-do, however, it is postulated that Kangwon-do will be vulnerable in the future. Through this study, local governments can use the data to establish adaptation plans for farmland landslide by climate change.

Estimating Economic Loss due to Wildlife Damage to Agriculture and Forestry Production Near Protected Areas: Case of Mountain Villages in Gurye-gun, Korea (보호지역 인근 야생동물에 의한 농작물과 임산물 피해액 추정: 구례군 6개 산촌마을의 사례)

  • Park, So-Hee;YOUN, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.618-627
    • /
    • 2019
  • An increase in damage to crops and facilities caused by wildlife such as wild boar causes serious social and economic problems to the rural economy in Korea. This study aims to estimate the economic losses incurred to rural households in mountain villages near protected areas in Korea due to the damage to agricultural and forestry production by wildlife. The case of mountain villages located in Toji-myeon, Gurye-gun near the Jirisan National Park was studied as an example. Data were collected by interviewing 84 households across six mountain villages in April and June 2016. The results indicate that the economic losses due to wildlife damage in 2015 were estimated to be 1.65 million KRW per household, which is a total of 138.63 million KRW for the 84 households. Among local products, the most damaged products were chestnut, fern-brake, wild pear, peach, and potato, whereas the most damaged products per production area were sweet potato, peach, corn, and potato. The potential economic losses caused by wildlife damage to agricultural and forestry production in whole Gurye-gun area was estimated to be around 4.0 billion KRW in 2015. However, the municipal government budget for the compensation of wildlife damage was only 0.9 percent of the potential rural economic losses caused by wildlife damage in 2015. The results of our study suggest that the compensation scheme for wildlife damage is inadequate in the respect of social justice. Considering the low financial capacity of the municipalities in mountain areas, the central government should take a progressive responsibility by allocating more financial resources for compensation of economic losses of rural households due to wildlife damage. The equitable and effective governance of wildlife conservation is required for sustainable development of rural communities near protected areas.