• 제목/요약/키워드: Peptide acylation

검색결과 7건 처리시간 0.023초

Effect of Peptide Charge on the Formation of Acylated Peptide Impurities in PLGA Formulations

  • Na, Dong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권2호
    • /
    • pp.91-94
    • /
    • 2011
  • The purpose of this study was to investigate the effect of peptide charge on the interaction between peptide and poly(D,L-lactide-co-glycolide) (PLGA) for evaluating mechanism of acylated peptide formation in PLGA matrix. As a model peptide, octreotide, a synthetic somatostatin analogue and active ingredient of commercial PLGA product, was used. The disulfide group of octreotide was reduced with dithiothreitol and the sulfhydryl groups were modified with N-${\beta}$-maleimidopropionic acid (BMPA) to neutralize octreotide with positive charge in physiological conditions. The BMPA-conjugated octreotide was identified by measuring the molecular mass with liquid chromatography-mass spectrometry. In the interaction study with PLGA, native octreotide showed initial adsorption to PLGA and substantial production of acylated peptides (56% of overall peptide), whereas BMPA-conjugated octreotide showed minimal adsorption to PLGA and no acylation products for 42 days. Consequently, the neutralization of octreotide completely inhibited the peptide acylation by preventing interaction of peptide with PLGA. In conclusion, this study demonstrates that the initial polymer interaction of peptide is important step for peptide acylation in PLGA matrix and suggests the modulation of peptide charge as strategy for inhibiting the formation of acylated peptide impurities.

Effect of pH on the Formation of Acylated Octreotides by Poly(lactide-co-glycolide)

  • Na, Dong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권4호
    • /
    • pp.251-254
    • /
    • 2010
  • The formation of acylated peptide impurities in poly(lactide-co-glycolide) (PLGA) formulations is one of the major challenges to the development of successful sustained-release product. Octreotide, synthetic analogue of somatostatin, has been identified to be acylated in PLGA microsphere formulations. The purpose of this study was to investigate the pH effect on the formation of acylated octreotides by PLGA. In the incubation with PLGA in 0.1 M phosphate buffer at pH 7.4, approximately 98% of octreotide adsorbed to PLGA through 14 days and 66.3% of acylated octreotides were produced after 42 days, whereas the interaction of octreotide with PLGA was significantly inhibited in the incubation at pH 4, in which the acylated octreotides were observed to be 9.2% after 42 days. In the interaction study at pH 4.1-7.4, the production of acylated octreotides was demonstrated to be dependent on environmental pH. Below pH 5.0, the acylation of octreotide was significantly inhibited. This study indicates that the pH is the major factor for the formation of acylated octreotide in PLGA formulations.

Peptide Synthesis with Polymer Bound Active Ester. Ⅱ. Synthesis of Pyrazolone Resin and Its Application in Acylation Reaction

  • Jong-Bum Kim;Yoon-Sik Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권4호
    • /
    • pp.376-379
    • /
    • 1991
  • Pyrazolone group containing resin was tested as an acyl carrier in solid phase peptide synthesis. Several kinds of dipeptide derivatives were prepared by aminolysis reactions of Boc-amino acid-pyrazolone resin active ester with various carboxyl protected amino acid derivatives. It was found that the rates of aminolysis reactions were largely dependent on the bulkiness of the amino acid side chains, the carboxyl protecting groups, and the swelling property of the resin. All the dipeptide derivatives were obtained in high yield in 20-30 minutes, and the pyrazolone resin could be reused repeatedly in peptide synthesis without any change of its reactivity.

Facile Synthetic Route to Ascorbic Acid-Dipeptide Conjugate via N-Terminal Activation of Peptide on Resin Support

  • Yang, Jin-Kyoung;Kwak, Seon-Yeong;Jeon, Su-Ji;Kim, Hye-In;Kim, Jong-Ho;Lee, Yoon-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2381-2384
    • /
    • 2014
  • A solid-phase synthetic approach is reported for the synthesis of an ascorbic acid (ASA)-dipeptide conjugate that exhibited enhanced antioxidant activity. The N-terminal amino group of dipeptide (Ala-Ala) on a resin support was first activated by 1,1'-carbonyldiimidazole (CDI), and then reacted with an ASA derivative. The addition of a base, triethylamine (TEA), promoted nucleophilic acylation of ASA derivative and yielded a desired product (ASA-Ala-Ala) with enhanced purity, when cleaved from the resin. Compared to the approach where a C3 hydroxyl group of ASA was first activated with CDI and then reacted with the amino group of dipeptide on the resin, this new approach allowed a significant reduction of a total reaction time from 120 h to 8 h at $25^{\circ}C$. As-prepared ASA-dipeptide conjugate (ASA-Ala-Ala) showed improved antioxidant activity compared to ASA.

Peptide Synthesis with Polymer Bound Active Ester. I. Rapid Synthesis of Peptides Using Polymer Bound 1-Phenyl-3-methyl-4-oximinopyrazole

  • Lee, Ki-Wha;Lee, Yoon-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권4호
    • /
    • pp.331-335
    • /
    • 1989
  • Polymer bound 1-phenyl-3-methyl-4-oximinopyrazoles were prepared through a series of chemical modifications of Merrifield's resin (chloromethylpolystyrene-$1{\%}$ DVB-copolymer). Several polymer active esters of N-blocked amino acids were prepared from the polymer bound 1-phenyl-3-methyl-4-oximinopyrazoles. Polymer bound active esters were found to be highly reactive in N-acylation reaction. The resins were tested for the preparation of several dipeptides. The peptides were obtained in high yields within 10 minutes and the progress of the reactions could be easily followed up by the color change of the resin. The resulting peptides were characterized by NMR and other physical methods.

고분자에 결합된 활성 에스테르에 의한 펩티드합성 III. 1-페닐-3-메틸-4-옥시미노피라졸레진을 이용한 펩티드 합성에서 Spacer Arm의 효과 (Peptide Synthesis with Polymer Bound Active Ester III. The Effect of Spacer Arm in Peptide Synthesis with 1-Phenyl-3-methyl-4-oximino pyrazole Resin)

  • 왕영;이윤식
    • 공업화학
    • /
    • 제4권1호
    • /
    • pp.132-143
    • /
    • 1993
  • Aminomethyl레진을 chloromethyl레진(Merrifield레진)으로부터 또는 polystyrene레진을 직접 amidoalkylation하여 각각 합성하였다. 두 종류의 aminomethyl레진을 이용하여 5개의 ${\varepsilon}$-aminocaproic acid(ACA)가 차례로 커플링 된 spacer arm을 가진 레진들을 각각 합성하였다. Chloromethyl레진으로부터 합성된 aminomethyl레진의 경우 ACA를 매번 커플링 할 때마다 25~30%의 유리 아미노기의 양이 감소하였으며, 직접 amidoalkylation에 의해 합성한 amlnomethyl 레진의 경우 매 커플링 단계 마다 3~5%의 유리 아미노기의 양이 감소하였다. 4-Nitroso-5-aminopyrazole 기능기를 가진 레진은 직접 amidoalkylation하여 얻은 레진에 ACA를 spacer arm으로 커플링시켜 얻은 레진과 5-phenyl-7-methylpyrazole[4,3-c][1,2,4]oxadiazin-3-one을 반응시켜 얻었다. 4-Nitroso-5-aminopyrazole 기능기를 가진 레진을 이용하여 ${\alpha}$-아미노기가 보호된 여러 가지 아미노산의 활성에스테르 레진들을 합성하였다. 4-Nitroso-5-aminopyrazole 기능기를 가진 활성 에스테르 레진은 N-acylation 반응에 매우 뛰어난 반응성을 나타내었다. 또한 입체장애 효과 없이 아미노산 유도체의 종류에 거의 무관하게 아실화 반응이 일어났으며 90~96%의 수율로 펩티드들을 합성할 수 있었다. 얻어진 펩티드들은 NMR을 비롯한 여러 가지 물리적 방법으로 그 순도를 확인하였다.

  • PDF

Expression and Characterization of Polyketide Synthase Module Involved in the Late Step of Cephabacin Biosynthesis from Lysobacter lactamgenus

  • Lee, Ji-Seon;Vladimirova, Miglena G.;Demirev, Atanas V.;Kim, Bo-Geum;Lim, Si-Kyu;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.427-433
    • /
    • 2008
  • The cephabacins produced by Lysobacter lactamgenus are ${\beta}$-lactam antibiotics composed of a cephem nucleus, an acetate residue, and an oligopeptide side chain. In order to understand the precise implication of the polyketide synthase (PKS) module in the biosynthesis of cephabacin, the genes for its core domains, ${\beta}$-ketoacyl synthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), were amplified and cloned into the pET-32b(+) expression vector. The sfp gene encoding a protein that can modify apo-ACP to its active holo-form was also amplified. The recombinant KS, AT, apo-ACP, and Sfp overproduced in the form of $His_6$-tagged fusion proteins in E. coli BL21(DE3) were purified by nickel-affinity chromatography. Formation of stable peptidyl-S-KS was observed by in vitro acylation of the KS domain with the substrate [L-Ala-L-Ala-L-Ala-L-$^3H$-Arg] tetrapeptide-S-N-acetylcysteamine, which is the evidence for the selective recognition of tetrapeptide produced by nonribosomal peptide synthetase (NRPS) in the NRPS/PKS hybrid. In order to confirm whether malonyl CoA is the extender unit for acetylation of the peptidyl moiety, the AT domain, ACP domain, and Sfp protein were treated with $^{14}C$-malonyl-CoA. The results clearly show that the AT domain is able to recognize the extender unit and decarboxylatively acetylated for the elongation of the tetrapeptide. However, the transfer of the activated acetyl group to the ACP domain was not observed, probably attributed to the improper capability of Sfp to activate apo-ACP to the holo-ACP form.