• Title/Summary/Keyword: Pepper Removal Mechanism

Search Result 3, Processing Time 0.019 seconds

Development of a Pepper Removal Mechanism for a Red-Pepper Harvester (I)- Size Reduction of the Pepper Removal Mechanism and Improvement of Pepper Recovery Ratio - (고추수확기의 탈실장치 개발 (I) - 탈실장치의 소형화와 회수율의 제고 -)

  • 이종호;박승제;이중용
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.177-188
    • /
    • 1997
  • A pepper harvester using a pair of counter rotating helically wound cylinders as a pepper removal mechanism has been developed. Pepper harvesting by machines under the customary cultivation practice was expected to lower land productivity, that most farmers were concerned about. As one way to compensate for loss in land productivity by machine harvest, experts on pepper cultivation suggested change of both varieties and plant density per area. From the view of machine design, their suggestion implied that distance between rows should be narrower and height of the pepper removal mechanism could be shorter. Experiments to improve perfect pepper recovery ratio and to reduce size of the pepper removal mechanism was accomplished. In order to be a economically feasible harvester, minimum pepper recovery ratio was required to be greater or equal to 80%. The research goal was achieved by both reducing the diameter of the wire-helices from 30 cm to 18 cm and increasing rotational speed of the wire-helices up to 425 rpm. The best perfect pepper recovery ratio was 82.3%. Validity of experiment design and interpretation on statistical analysis were discussed. To understand the pepper removal mechanism properly, a pepper removal theory based physics was judged to be necessary.

  • PDF

Analysis of Red Pepper Calyx Cutting Using a Rotational Cutter (회전날을 이용한 홍고추의 꼭지 절단 경향 분석)

  • 이승규;송대빈;정의권
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.209-216
    • /
    • 2003
  • Red pepper calyx cutting devices using a impacting force by a rotational cutter were devised and tested to obtain the fundamental data for development of a calyx removal unit. Fresh red peppers with 80∼87%(w.b.) of initial moisture contents were used as experimental materials. Square and wire type of rotational cutters were used to cut the red pepper calyx and the fresh red peppers were fed into the device both manually and automatically. Three rotational speeds of 250, 500, 700rpm were selected for a square, and 1000, 1500, 1800rpm for a wire type cutter respectively. Four types of red pepper fixing unit were used in manual feeding. The cutting rate of the square type cutter was over 50% regardless the shape and specification of the cutter. For the wire type cutter, the copper wire and nylon chord could not be applied to cut the red pepper calyx because of the low cutting rate. But for the fine wire, the cutting rate was higher and the cutting mechanism was more steady than copper wire and nylon chord. The cutting rate of automatic feeding and wire type cutting unit was about 70% for all levels of the rotational speed. The cutting rate was highly related to the impacting point of red pepper in carrier box. To increase the cutting rate using the rotational cutter, a proper device and mechanism was required to keep the impacting point consistently.

Selective colonization and removal of senescent flowers of zucchini squash by Trichoderma hrzianum YC459, a biocontrol agent for gray mold, Botrytis cinerea

  • Kim, Geun-Gon;Chung, Young-Ryun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.90.2-91
    • /
    • 2003
  • In commercial greenhouses, senescent flower petals or flowers of vegetables such as tomato, strawberry, hot pepper and zucchini squash were blighted to be removed from fruits within five days after spraying of Trichoderma harzianum YC459 (TORY), a biocontrol agent for the gray mold rot of vegetables caused by B. cinerea The mechanism for selective colonization of senescent floral tissues by T. harzianum YC459 was elucidated using fresh and senescent (Hays and 14days after flowering, respectively) floral tissues of zucchini squash (Cucurbita moschata Duchesne). The spores of T. hrzianum YC459 were produced more on agar and liquid culture media supplemented with 5% dry powder of senescent floral tissues than fresh tissues during 15days. Mycelial growth was also much better in the media with senescent tissues than with fresh tissues. Enzyme activities of amylase, polygalacturonase and cellulase in the liquid media which might be involved in the colonization of tissues by T. harzianum YC459 were compared. The activities of three enzymes were much higher in the media with senescent floral tissues than with fresh floral tissues reaching to the maximum during 9 to 12days of incubation. Based on the results, the removal of senescent floral tissues, a possible inoculum source of the pathogen, may be another mechanism for biocontrol of gray mold rot of vegetables by T. harzianum YC459.

  • PDF