• Title/Summary/Keyword: People Detection

Search Result 678, Processing Time 0.027 seconds

New Approach to Two-wheeler Detection using Correlation Coefficient based on Histogram of Oriented Gradients

  • Lee, Yeunghak;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.119-128
    • /
    • 2016
  • This study aims to suggest a new algorithm for detecting two-wheelers on road that have various shapes according to the viewing angle for vision based intelligent vehicles. This article describes a new approach to two-wheelers detection algorithm riding on people based on modified Histogram of Oriented Gradients (HOG) using correlation coefficient (CC). The CC between two local area variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using HOG which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the CC between the area of each cell and one of two-wheelers, can be extracted as the weighting factor in process for normalizing the modified HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. In this experiment, we can get the result that the detection rate of the proposed method is higher than that of the traditional method.

Telemonitoring System of Fall Detection for the Elderly (노인을 위한 원격 낙상 검출 시스템)

  • Lee, Yong-Gyu;Cheon, Dae-Jin;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.420-427
    • /
    • 2011
  • The population of elderly people increases rapidly as our society moves towards the aged one. Healthcare for the elderly becomes an important issue and falling down is one of the critical problems although not well recognized. In this study, a fall detection system was developed using a 3-axis accelerometer. Analyzing fall patterns, we took into account the degree of impact, posture angle, the repetitions of similar movements and the activities after a potential fall and proposed an algorithm of fall detection. Information of the fall sensor was sent to a remote healthcare server through the wireless networks of Zigbee and WLAN. Our system was designed to monitor multiples users. 12 persons participated in experiment and each one performed 24 different movements. Our proposed algorithm was compared with other reported ones. Our method produced the excellent results having a sensitivity of 96.4 % and a specificity of 100 % whereas other methods had a sensitivity range between 87.5 % and 94.8 % and a specificity range between 63.5 % and 83.3 %.

R Wave Detection Considering Complexity and Arrhythmia Classification based on Binary Coding in Healthcare Environments (헬스케어 환경에서 복잡도를 고려한 R파 검출과 이진 부호화 기반의 부정맥 분류방법)

  • Cho, Iksung;Yoon, Jungoh
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.33-40
    • /
    • 2016
  • Previous works for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods require accurate detection of ECG signal, higher computational cost and larger processing time. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system based IOT that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose R wave detection considering complexity and arrhythmia classification based on binary coding. For this purpose, we detected R wave through SOM and then RR interval from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. R wave detection and PVC, PAC, Normal classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41%, 97.18%, 94.14%, 99.83% in R wave, PVC, PAC, Normal.

Feature Selection to Mine Joint Features from High-dimension Space for Android Malware Detection

  • Xu, Yanping;Wu, Chunhua;Zheng, Kangfeng;Niu, Xinxin;Lu, Tianling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4658-4679
    • /
    • 2017
  • Android is now the most popular smartphone platform and remains rapid growth. There are huge number of sensitive privacy information stored in Android devices. Kinds of methods have been proposed to detect Android malicious applications and protect the privacy information. In this work, we focus on extracting the fine-grained features to maximize the information of Android malware detection, and selecting the least joint features to minimize the number of features. Firstly, permissions and APIs, not only from Android permissions and SDK APIs but also from the developer-defined permissions and third-party library APIs, are extracted as features from the decompiled source codes. Secondly, feature selection methods, including information gain (IG), regularization and particle swarm optimization (PSO) algorithms, are used to analyze and utilize the correlation between the features to eliminate the redundant data, reduce the feature dimension and mine the useful joint features. Furthermore, regularization and PSO are integrated to create a new joint feature mining method. Experiment results show that the joint feature mining method can utilize the advantages of regularization and PSO, and ensure good performance and efficiency for Android malware detection.

Hands-free Robot Control System Using Mouth Tracking (입 추적을 이용한 로봇 원격 제어 시스템)

  • Wang, Liang;Xu, Yongzhe;Ahmed, Minhaz;Rhee, Phill-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.405-408
    • /
    • 2011
  • In this paper, we propose a robot remote control system based on mouth tracking. The main idea behind the work is to help disabled people who cannot operate a joystick or keyboard to control a robot with their hands. The mouth detection method in this paper is mainly based on the Adaboost feature detection approach. By using the proposed new Haar-like features for detecting the corner of mouth, the speed and accuracy of detection are improved. Combined with the Kalman filter, a continuous and accurate mouth tracking has been achieved. Meanwhile, the gripping commands of the robot manipulator were also achieved by the recognition of the user.s mouth shape, such as 'pout mouth' or 'grin mouth'. To assess the validity of the method, a mouth detection experiment and a robot cargo transport experiment were applied. The result indicated that the system can realize a quick and accurate mouse tracking; and the operation of the robot worked successfully in moving and bringing back items.

A Comprehensive Analyses of Intrusion Detection System for IoT Environment

  • Sicato, Jose Costa Sapalo;Singh, Sushil Kumar;Rathore, Shailendra;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.975-990
    • /
    • 2020
  • Nowadays, the Internet of Things (IoT) network, is increasingly becoming a ubiquitous connectivity between different advanced applications such as smart cities, smart homes, smart grids, and many others. The emerging network of smart devices and objects enables people to make smart decisions through machine to machine (M2M) communication. Most real-world security and IoT-related challenges are vulnerable to various attacks that pose numerous security and privacy challenges. Therefore, IoT offers efficient and effective solutions. intrusion detection system (IDS) is a solution to address security and privacy challenges with detecting different IoT attacks. To develop an attack detection and a stable network, this paper's main objective is to provide a comprehensive overview of existing intrusion detections system for IoT environment, cyber-security threats challenges, and transparent problems and concerns are analyzed and discussed. In this paper, we propose software-defined IDS based distributed cloud architecture, that provides a secure IoT environment. Experimental evaluation of proposed architecture shows that it has better detection and accuracy than traditional methods.

1D CNN and Machine Learning Methods for Fall Detection (1D CNN과 기계 학습을 사용한 낙상 검출)

  • Kim, Inkyung;Kim, Daehee;Noh, Song;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.85-90
    • /
    • 2021
  • In this paper, fall detection using individual wearable devices for older people is considered. To design a low-cost wearable device for reliable fall detection, we present a comprehensive analysis of two representative models. One is a machine learning model composed of a decision tree, random forest, and Support Vector Machine(SVM). The other is a deep learning model relying on a one-dimensional(1D) Convolutional Neural Network(CNN). By considering data segmentation, preprocessing, and feature extraction methods applied to the input data, we also evaluate the considered models' validity. Simulation results verify the efficacy of the deep learning model showing improved overall performance.

Cascaded-Hop For DeepFake Videos Detection

  • Zhang, Dengyong;Wu, Pengjie;Li, Feng;Zhu, Wenjie;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1671-1686
    • /
    • 2022
  • Face manipulation tools represented by Deepfake have threatened the security of people's biological identity information. Particularly, manipulation tools with deep learning technology have brought great challenges to Deepfake detection. There are many solutions for Deepfake detection based on traditional machine learning and advanced deep learning. However, those solutions of detectors almost have problems of poor performance when evaluated on different quality datasets. In this paper, for the sake of making high-quality Deepfake datasets, we provide a preprocessing method based on the image pixel matrix feature to eliminate similar images and the residual channel attention network (RCAN) to resize the scale of images. Significantly, we also describe a Deepfake detector named Cascaded-Hop which is based on the PixelHop++ system and the successive subspace learning (SSL) model. By feeding the preprocessed datasets, Cascaded-Hop achieves a good classification result on different manipulation types and multiple quality datasets. According to the experiment on FaceForensics++ and Celeb-DF, the AUC (area under curve) results of our proposed methods are comparable to the state-of-the-art models.

Anomaly Intrusion Detection using Fuzzy Membership Function and Neural Networks (퍼지 멤버쉽 함수와 신경망을 이용한 이상 침입 탐지)

  • Cha, Byung-Rae
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.595-604
    • /
    • 2004
  • By the help of expansion of computer network and rapid growth of Internet, the information infrastructure is now able to provide a wide range of services. Especially open architecture - the inherent nature of Internet - has not only got in the way of offering QoS service, managing networks, but also made the users vulnerable to both the threat of backing and the issue of information leak. Thus, people recognized the importance of both taking active, prompt and real-time action against intrusion threat, and at the same time, analyzing the similar patterns of in-trusion already known. There are now many researches underway on Intrusion Detection System(IDS). The paper carries research on the in-trusion detection system which hired supervised learning algorithm and Fuzzy membership function especially with Neuro-Fuzzy model in order to improve its performance. It modifies tansigmoid transfer function of Neural Networks into fuzzy membership function, so that it can reduce the uncertainty of anomaly intrusion detection. Finally, the fuzzy logic suggested here has been applied to a network-based anomaly intrusion detection system, tested against intrusion data offered by DARPA 2000 Intrusion Data Sets, and proven that it overcomes the shortcomings that Anomaly Intrusion Detection usually has.

R Wave Detection Algorithm Based Adaptive Variable Threshold and Window for PVC Classification (PVC 분류를 위한 적응형 문턱치와 윈도우 기반의 R파 검출 알고리즘)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1289-1295
    • /
    • 2009
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation like ventricular fibrillation and ventricular tachycardia in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and prevention of possible life threatening cardiac diseases. Particularly, in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, design of algorithm that exactly detects R wave using minimal computation and classifies PVC is needed. So, R wave detection algorithm based adaptive threshold and window for the classification of PVC is presented in this paper. For this purpose, ECG signals are first processed by the usual preprocessing method and R wave was detected and adaptive window through R-R interval is used for efficiency of the detection. The performance of R wave detection and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate 99.33%, 88.86% accuracy respectively for R wave detection and PVC classification.