• Title/Summary/Keyword: People Counting System

Search Result 37, Processing Time 0.026 seconds

Determination of Optimum Threshold for Accuracy of People-counting System Based on Motion Detection

  • Ryu, Hanseul;Song, Junho;Lee, Boram;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.299-304
    • /
    • 2015
  • Objectives: A people-counting system measures real-time occupancy through motion detection. Accurate people-counting can be used to calculate suitable ventilation demands. This study determined the optimum motion threshold for a people-counting system. Methods: In a closed room with two occupants moving constantly, different thresholds were tested for the accuracy of a people-counting system. The experiments were conducted at 150, 300, 450 and 600 lux. These levels of brightness included the illumination levels of most public indoor areas. The experiments were repeated with three types of clothing coloration. Results: Overall, a threshold of 16 provided the lowest mean error percentage for the people-counting system. Brightness and clothing color did not have a significant impact on the results. Conclusion: A people-counting system could be used with threshold of 16 for most indoor environments.

People Counting System by Facial Age Group (얼굴 나이 그룹별 피플 카운팅 시스템)

  • Ko, Ginam;Lee, YongSub;Moon, Nammee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.69-75
    • /
    • 2014
  • Existing People Counting System using a single overhead mounted camera has limitation in object recognition and counting in various environments. Those limitations are attributable to overlapping, occlusion and external factors, such as over-sized belongings and dramatic light change. Thus, this paper proposes the new concept of People Counting System by Facial Age Group using two depth cameras, at overhead and frontal viewpoints, in order to improve object recognition accuracy and robust people counting to external factors. The proposed system is counting the pedestrians by five process such as overhead image processing, frontal image processing, identical object recognition, facial age group classification and in-coming/out-going counting. The proposed system developed by C++, OpenCV and Kinect SDK, and it target group of 40 people(10 people by each age group) was setup for People Counting and Facial Age Group classification performance evaluation. The experimental results indicated approximately 98% accuracy in People Counting and 74.23% accuracy in the Facial Age Group classification.

WiFi CSI Data Preprocessing and Augmentation Techniques in Indoor People Counting using Deep Learning (딥러닝을 활용한 실내 사람 수 추정을 위한 WiFi CSI 데이터 전처리와 증강 기법)

  • Kim, Yeon-Ju;Kim, Seungku
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1890-1897
    • /
    • 2021
  • People counting is an important technology to provide application services such as smart home, smart building, smart car, etc. Due to the social distancing of COVID-19, the people counting technology attracted public attention. People counting system can be implemented in various ways such as camera, sensor, wireless, etc. according to service requirements. People counting system using WiFi AP uses WiFi CSI data that reflects multipath information. This technology is an effective solution implementing indoor with low cost. The conventional WiFi CSI-based people counting technologies have low accuracy that obstructs the high quality service. This paper proposes a deep learning people counting system based on WiFi CSI data. Data preprocessing using auto-encoder, data augmentation that transform WiFi CSI data, and a proposed deep learning model improve the accuracy of people counting. In the experimental result, the proposed approach shows 89.29% accuracy in 6 subjects.

People Counting System using Raspberry Pi

  • Ansari, Md Israfil;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.239-242
    • /
    • 2017
  • This paper proposes a low-cost method for counting people based on blob detection and blob tracking. Here background subtraction is used to detected blob and then the blob is classified with its width and height to specify that the blob is a person. In this system we first define the area of entry and exit point in the video frame. The counting of people starts when midpoint of the people blob crosses the defined point. Finally, total number of people entry and exit from the place is displayed. Experiment result of this proposed system has high accuracy in real-time performance.

people counting system using single camera (카메라영상을 이용한 people counting system)

  • Jeong, Ha-Wook;Chang, Hyung-Jin;Baek, Young-Min;Kim, Soo-Wan;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.172-174
    • /
    • 2009
  • This paper describes an implementation method for the 'People Counting System' which detects and tracks moving people using a fixed single camera. This system proposes the method of improving performances by compensating weakness of existing algorithm. For increasing effect of detection, this system uses Single Gaussian Background Modeling which is more robust at noise and has adaptiveness. It minimizes unnecessarily detected area that is a limitation of the detecting method by using the background differences. And this system prevents additional detecting problems by removing shadow. Also, This system solves the problems of segmentation and union of people by using a new method. This method can work appropriately, if the angle of camera would not strictly vertical or the direction of shadow were lopsided. Also, by using integration System, it can solve a number of special cases as many as possible. For example, if the system fails to tracking, it will detect the object again and will make it possible to count moving people.

  • PDF

Counting People Walking Through Doorway using Easy-to-Install IR Infrared Sensors (설치가 간편한 IR 적외선 센서를 활용한 출입문 유동인구 계측 방법)

  • Oppokhonov, Shokirkhon;Lee, Jae-Hyun;Jung, Jae-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.35-40
    • /
    • 2021
  • People counting data is crucial for most business owners, since they can derive meaningful information about customers movement within their businesses. For example, owners of the supermarkets can increase or decrease the number of checkouts counters depending on number of occupants. Also, it has many applications in smart buildings, too. Where it can be used as a smart controller to control heating and cooling systems depending on a number of occupants in each room. There are advanced technologies like camera-based people counting system, which can give more accurate counting result. But they are expensive, hard to deploy and privacy invasive. In this paper, we propose a method and a hardware sensor for counting people passing through a passage or an entrance using IR Infrared sensors. Proposed sensor operates at low voltage, so low power consumption ensure long duration on batteries. Moreover, we propose a new method that distinguishes human body and other objects. Proposed method is inexpensive, easy to install and most importantly, it is real-time. The evaluation of our proposed method showed that when counting people passing one by one without overlapping, recall was 96% and when people carrying handbag like objects, the precision was 88%. Our proposed method outperforms IR Infrared based people counting systems in term of counting accuracy.

  • PDF

A Study on Pedestrian Counting in Outdoor Environment (야외환경에서의 보행자 계수 방법 연구)

  • Kim, Gyu-Jin;An, Tae-Ki;Shin, Jeong-Ryeol;Song, Min-Ji
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1973-1978
    • /
    • 2011
  • The almost existing automated pedestrian systems are not well suited to the task of counting pedestrians in outdoor environments, and little is known about their effectiveness and accuracy. In this paper, we proposed a system to count pedestrians in crowds from a outdoor camera. And we describes pedestrian counting which detects and count moving people based pixel counting. This method is intended to estimates the number of people in outdoor environment.

  • PDF

Pedestrian Counting System based on Average Filter Tracking for Measuring Advertisement Effectiveness of Digital Signage (디지털 사이니지의 광고효과 측정을 위한 평균 필터 추적 기반 유동인구 수 측정 시스템)

  • Kim, Kiyong;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.493-505
    • /
    • 2016
  • Among modern computer vision and video surveillance systems, the pedestrian counting system is a one of important systems in terms of security, scheduling and advertising. In the field of, pedestrian counting remains a variety of challenges such as changes in illumination, partial occlusion, overlap and people detection. During pedestrian counting process, the biggest problem is occlusion effect in crowded environment. Occlusion and overlap must be resolved for accurate people counting. In this paper, we propose a novel pedestrian counting system which improves existing pedestrian tracking method. Unlike existing pedestrian tracking method, proposed method shows that average filter tracking method can improve tracking performance. Also proposed method improves tracking performance through frame compensation and outlier removal. At the same time, we keep various information of tracking objects. The proposed method improves counting accuracy and reduces error rate about S6 dataset and S7 dataset. Also our system provides real time detection at the rate of 80 fps.

Density Change Adaptive Congestive Scene Recognition Network

  • Jun-Hee Kim;Dae-Seok Lee;Suk-Ho Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.147-153
    • /
    • 2023
  • In recent times, an absence of effective crowd management has led to numerous stampede incidents in crowded places. A crucial component for enhancing on-site crowd management effectiveness is the utilization of crowd counting technology. Current approaches to analyzing congested scenes have evolved beyond simple crowd counting, which outputs the number of people in the targeted image to a density map. This development aligns with the demands of real-life applications, as the same number of people can exhibit vastly different crowd distributions. Therefore, solely counting the number of crowds is no longer sufficient. CSRNet stands out as one representative method within this advanced category of approaches. In this paper, we propose a crowd counting network which is adaptive to the change in the density of people in the scene, addressing the performance degradation issue observed in the existing CSRNet(Congested Scene Recognition Network) when there are changes in density. To overcome the weakness of the CSRNet, we introduce a system that takes input from the image's information and adjusts the output of CSRNet based on the features extracted from the image. This aims to improve the algorithm's adaptability to changes in density, supplementing the shortcomings identified in the original CSRNet.

Design and Implementation of People Counting System Based Piezoelectric Mat for Simultaneous Passing Pedestrian Counting (동시 통과 보행 인원 계수를 위한 압전매트 기반 인원 계수 시스템 설계 및 구현)

  • Jang, Si-Woong;Cho, Jin-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1361-1368
    • /
    • 2020
  • The system for counting the number of people has traditionally been implemented in various ways. Existing systems include infrared sensors, lasers, cameras, etc. In the case of such an existing system, there are restrictions on space such as ceilings and sides of walls. In this paper, we propose a method of detecting the footsteps of pedestrians using a piezoelectric mat containing a number of piezoelectric sensors and counting the number of pedestrians passing simultaneously by using the data collected from the piezoelectric mat. When pedestrians pass over piezoelectric mats, the collected sensor data was aggregated using SPI communication and transmitted to PC server using TCP/IP communication. Performance analysis shows that approximately 600 step data can be recognized with 99% accuracy. This is to overcome the shortcomings of other counting systems.