• Title/Summary/Keyword: Pentadecafluorooctanoic acid

Search Result 2, Processing Time 0.016 seconds

Effects of Surfactant PDFO on Photoluminescence of Porous Silicon (다공질 실리콘의 광발광에 관한 계면활성제 PDFO 효과)

  • Kim Buem-Suck;Yoon Jeong-Hyun;Bae Sang-Eun;Lee Chi-Woo;Oh Won-Jin;Lee Geun-Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.10-13
    • /
    • 2001
  • Effects of an anionic surfactant pentadecafluorooctanoic acid on the photoluminescence of porous silicon was investigated, which was prepared by photoelectrochemical etching at 4V of single crystalline n-type silicon (100) with the specific resistivity of $0.4\~0.8{\Omega}{\cdot}cm$. Photoluminescence shifted to shorter wavelength and its intensity decreased when the concentration of the surfactant increased. FT-IR and contact angle data supported the presence of the surfactant lying on the surface of porous silicon.

The Extraction of Metal Contaminants using Supercritical CO2 (초임계이산화탄소를 이용한 방사성 금속이온 추출)

  • Ju, Minsu;Kim, Jung-Hoon;Kang, Se-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.5
    • /
    • pp.660-667
    • /
    • 2016
  • Conventional decontamination methods utilize water-based systems, which generate high amounts of secondary wastes. Herein, we describe an environmentally benign decontamination method using liquid and supercritical $CO_2$. The use of $CO_2$ as a solvent affords effective waste reduction by its ability to be recycled, thereby leaving be hind only the contaminants upon its evaporation. In this study, a $CO_2$ solution process was assessed using t-salen(t-butylsalen), DC18C6 (dicyclohexano-18Crown6), 8-HQN(8-hydroxyquinoline), NEt4PFOSA(perfluoro-1-octanesulfonic acid tetra-ethyl ammonium salt), and NEt4PFOA(pentadecafluorooctanoic acid ammonium salt) to extract spiked radioactive contaminants(Nb,Zr,Co,Sr) from an inert sample matrix, namely filter paper. With the static extraction method, Sr was extracted with a maximum extraction rate of 97%, and Nb was extracted with a maximum extraction rate of 75%. Additionally, we were also able to extract Co and Zr with maximum extract ion ratesof 73% and 64%, respectively.