• Title/Summary/Keyword: Penolic resin

Search Result 2, Processing Time 0.017 seconds

Preparation of Activated Carbon Screen Using Stainless Steel Mesh and Cellulose Fiber (스테인레스 망과 섬유를 이용한 활성탄소 망의 제조)

  • Shin, Jinhwan;Kim, Taeyoung;Jeoung, Youngdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • In this work, stainless steel mesh-supported activated carbons were prepared using phenolic resin and cellulose fiber. $ZnCl_2$ was used as a activation reagent in this work. $ZnCl_2$-chemical activation method has been proposed to produce highly porous activated carbons. The objectives of this work were to develop an optimal condition for manufacturing activated carbon assemblies screen from stainless steel mesh and phenolic resin. The iodine number was more increased over activation temperature of $450^{\circ}C$. Iodine number was 657 mg/g at activation temperature of $550^{\circ}C$, penolic resin concentration 20% and $ZnCl_2$ concentration 15%. Iodine number was 1359.4 mg/g when 10% cellulose added to these conditions.

  • PDF

Preparation of Activated Carbon Fiber-Ceramic Composites and Its Physical Properties (활성탄소섬유-세라믹복합체의 제조 및 물성)

  • 이재춘;박민진;김병균;신경숙;이덕용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.56-62
    • /
    • 1997
  • The PAN (Polyacrylonitrile) based carbon fiber-ceramic composites (CFCC) were prepared from mixtures of short carbon fibers, phenolic resin and ceramic binder. The effects of carbonization temperature of a pre-cursor fiber, the stabilized PAN fiber, on the specific surface area and the bending strength of the activated CFCC were studied in this work. The precursor fiber was carbonized at 80$0^{\circ}C$ and 100$0^{\circ}C$, respectively. The CFCC were activated at 85$0^{\circ}C$ in carbon dioxide for 10~90 minutes. As the burn-off of the activated CFCC made of the precursor fiber carbonized at 80$0^{\circ}C$ was increased from 37% to 76%, the specific surface area in-creased from 493m2/g to 1090m2/g, and the bending strength decreased from 4.5MPa to 1.4MPa. These values were about two times larger than those of the activated CFCC of which precursor fiber was car-bonized at 100$0^{\circ}C$. The effects of carbonization temperature of a precursor fiber on the specific surface area and bending strength of the activated CCFC were explained by bonding force between carbon fiber and car-bonized phenolic resin as well as by relative shirnkage between carbon fiber and ceramic film.

  • PDF