• 제목/요약/키워드: Pennisetum glaucum

검색결과 7건 처리시간 0.023초

A study on pearl millet (Pennisetum glaucum L.) plant Biochemical and histochemical changes inoculated with indigenous AM fungi under Barren soil

  • Pal, Ajay;Pandey, Sonali
    • Journal of Plant Biotechnology
    • /
    • 제44권2호
    • /
    • pp.203-206
    • /
    • 2017
  • The soil organisms that develop beneficial Symbiotic relationships with plants roots and contribute to plant growth are mycorrhizal (AM) fungi. Arbuscular mycorrhizal inoculations change the growth and biochemical composition of the host plant and soil. Mycorrhizal root systems do augment the absorbing area of roots from 10 to 100 times thereby greatly improving the ability of the plants to utilize the soil resources. A pot experiment was conducted during the kharif seasons at Jaipur, Rajasthan, to find out the effects of three different indigenous AM fungi i.e. Glomus mosseae, Glomus fasciculatum and Gigaspora decipiens either single and in combination inoculation on biochemical and histochemical changes of Pearl millet (Pennisetum glaucum L.) grown under barren soil conditions. The AM fungus has shown to improve the tolerance of plant to drought stress. Experimental results showed that AM fungi treated plants improved their plants growths, biochemical and histochemical changes as compared to non-mycorrhizal treatments. The AM fungi inoculated plant was found to be attaining maximum plant biochemical and histochemical substances in Glomus mosseae (alone) and also Glomus mosseae + Glomus fasciculatum treatments.

Characterization of Plant-Growth-Promoting Traits of Acinetobacter Species Isolated from Rhizosphere of Pennisetum glaucum

  • Rokhbakhsh-Zamin, Farokh;Sachdev, Dhara;Kazemi-Pour, Nadia;Engineer, Anupama;Pardesi, Karishma R.;Zinjarde, Smita;Dhakephalkar, Prashant K.;Chopade, Balu A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.556-566
    • /
    • 2011
  • A total of 31 Acinetobacter isolates were obtained from the rhizosphere of Pennisetum glaucum and evaluated for their plant-growth-promoting traits. Two isolates, namely Acinetobacter sp. PUCM1007 and A. baumannii PUCM1029, produced indole acetic acid (10-13 ${\mu}g$/ml). A total of 26 and 27 isolates solubilized phosphates and zinc oxide, respectively. Among the mineral-solubilizing strains, A. calcoaceticus PUCM1006 solubilized phosphate most efficiently (84 mg/ml), whereas zinc oxide was solubilized by A. calcoaceticus PUCM1025 at the highest solubilization efficiency of 918%. All the Acinetobacter isolates, except PUCM1010, produced siderophores. The highest siderophore production (85.0 siderophore units) was exhibited by A. calcoaceticus PUCM1016. Strains PUCM1001 and PUCM1019 (both A. calcoaceticus) and PUCM1022 (Acinetobacter sp.) produced both hydroxamate-and catechol-type siderophores, whereas all the other strains only produced catechol-type siderophores. In vitro inhibition of Fusarium oxysporum under iron-limited conditions was demonstrated by the siderophore-producing Acinetobacter strains, where PUCM1018 was the most potent inhibitor of the fungal phytopathogen. Acinetobacter sp. PUCM1022 significantly enhanced the shoot height, root length, and root dry weights of pearl millet seedlings in pot experiments when compared with controls, underscoring the plant-growth-promoting potential of these isolates.

Characterization of Sclerospora graminicola Isolates from Pearl Millet for Virulence and Genetic Diversity

  • Pushpavathi B.;Thakur R. P.;Rao K. Chandrashekara;Rao V. P.
    • The Plant Pathology Journal
    • /
    • 제22권1호
    • /
    • pp.28-35
    • /
    • 2006
  • Virulence and genetic diversity were studied using 21 isolates of Sclerospora graminicola, the pearl millet downy mildew pathogen collected from major pearl millet growing areas of India. Variability for virulence was determined by inoculating a set of 10 differential hosts with the S. graminicola isolates in a greenhouse. The isolates varied for latent period (6.4 to 11 days), disease incidence (0 to $98\%$), virulence index (0 to 18.7) and oospore-production potential (1 to 4). Among the 21 isolates, Sg 139 (Rajasthan) was the most virulent and Sg 110 (Tamil Nadu) the least virulent. Based on virulence index (disease incidence$\time$slatent $period^{-1}$), the 21 isolates were classified into eight virulence groups. Genetic diversity among isolates was studied using AFLP markers. Based on similarity index of banding pattern, the 21 isolates were clustered into eight genotypic groups. The AFLP groupings, however, did not match with that of the virulence groupings, and these two were found independent. The isolate Sg 139 that remained distinct in both pathogenic and genetic groupings indicated its highly virulent nature. Implications of these results in downy mildew resistance breeding are discussed.

Effects of Co-Cultures, Containing N-Fixer and P-Solubilizer, on the Growth and Yield of Pearl Millet (Pennisetum glaucum (L.) R. Br.) and Blackgram (Vigna mungo L.)

  • POONGUZHALI POONGUZHALI;SELVARAJ SELVARAJ;MADHAIYAN MUNUSAMY;THANGARAJU MUTHU;RYU JEOUNGHYUN;CHUNG KEUNYOOK;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.903-908
    • /
    • 2005
  • Inoculation of the carrier-based mixed bioinoculants af N-fixer (Azospirillum lipoferum strain Az204/Rhizobium strain BMBS P47) and phosphate-solubilizing bacterium (Bacillus megaterium var phosphaticum strain Pb 1) promoted growth and yield of pearl millet and blackgram under pot-culture conditions. The mixed inoculant of Az204 and Pb 1 enhanced germination, seedling vigor, plant height, and seed weight, and resulted in $6\%$ increase in grain yield of pearl millet. Likewise, the mixed inoculant of BMBS P47 and Pb1 increased growth, nodulation, and yield in blackgram. The rhizosphere soil enzyme activities, including nitrogenase, urease, and phosphatase, in both pearl millet and blackgram were significantly increased by the inoculation of the mixed inoculant, compared to that of the individual inoculants. The results clearly indicate the beneficial effect of co-culturing the N-fixer and P-solubilizer in inoculants production.

Stem Rot of Pearl Millet Prevalence, Symptomatology, Disease Cycle, Disease Rating Scale and Pathogen Characterization in Pearl Millet-Klebsiella Pathosystem

  • Vinod Kumar Malik;Pooja Sangwan;Manjeet Singh;Pavitra Kumari;Niharika Shoeran;Navjeet Ahalawat;Mukesh Kumar;Harsh Deep;Kamla Malik;Preety Verma;Pankaj Yadav;Sheetal Kumari;Aakash;Sambandh Dhal
    • The Plant Pathology Journal
    • /
    • 제40권1호
    • /
    • pp.48-58
    • /
    • 2024
  • The oldest and most extensively cultivated form of millet, known as pearl millet (Pennisetum glaucum (L.) R. Br. Syn. Pennisetum americanum (L.) Leeke), is raised over 312.00 lakh hectares in Asian and African countries. India is regarded as the significant hotspot for pearl millet diversity. In the Indian state of Haryana, where pearl millet is grown, a new and catastrophic bacterial disease known as stem rot of pearl millet spurred by the bacterium Klebsiella aerogenes (formerly Enterobacter) was first observed during fall 2018. The disease appears in form of small to long streaks on leaves, lesions on stem, and slimy rot appearance of stem. The associated bacterium showed close resemblance to Klebsiella aerogenes that was confirmed by a molecular evaluation based on 16S rDNA and gyrA gene nucleotide sequences. The isolates were also identified to be Klebsiella aerogenes based on biochemical assays, where Klebsiella isolates differed in D-trehalose and succinate alkalisation tests. During fall 2021-2023, the disease has spread all the pearl millet-growing districts of the state, extending up to 70% disease incidence in the affected fields. The disease is causing considering grain as well as fodder losses. The proposed scale, consisting of six levels (0-5), is developed where scores 0, 1, 2, 3, 4, and 5 have been categorized as highly resistant, resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible disease reaction, respectively. The disease cycle, survival of pathogen, and possible losses have also been studied to understand other features of the disease.

하계 응급 조사료 자원의 생육특성 및 조사료 생산성 평가 (Evaluation of Growth Characteristics and Yield Potential of Summer Emergency Forage Crops)

  • 박형수;최기춘;양승학;정종성;이배훈
    • 한국초지조사료학회지
    • /
    • 제42권1호
    • /
    • pp.26-31
    • /
    • 2022
  • 본 연구는 여름 사료작물 재배기간에 빈번하게 발생하는 가뭄, 폭우 등 이상 기후에 대응한 여름철 응급 조사료 자원을 선발하고 잠재적 생산성을 평가하기 위해 2020년 5월부터 2021년 10월까지 충청남도 천안시 소재 국립축산과학원 축산자원개발부 초지 조사료 시험포장에서 재배시험을 수행하였다. 시험 초종은 여름철 응급조사료 자원으로 유망한 사료용 피(Echinochloa species cv. Shirohie and Jeju native), 재래기장(Panicum miliaceum cv. Native), 진주조(Pennisetum glaucum cv. Feed milk 2), 클라인그라스(Panicum coloratum cv. Selection 75), 테프그라스(Eragrostis tef cv. Tiffany)를 수집하여 파종은 2020년에 5월 21일과 6월 23일에 각 각 파종하였으며 2021년에는 5월 21일과 6월 21일에 2회 파종하였다. 사료용 피와 클라인그라스의 출현소요일은 6~10일 정도로 파종 후 가장 늦게 출현되었고 재래기장과 진주조는 5~6일 소요되었으며 테프그라스는 3일로 가장 빨리 출현되었다. 파종부터 수확까지 재배기간은 사료용 피 만생종(84일 이내)을 제외하고 모든 초종이 60일 이내에 출수기에 도달하였다. 파종시기별 건물수량은 5월 파종에서 사료용 피 만생종의 건물수량이 23,872 kg/ha로 가장 높게 나타났으며 클라인그라스가 3,888 kg/ha로 가장 낮게 나타났다. 6월 파종은 사료용 피 만생종의 건물 수량이 17,032 kg/ha로 가장 높게 나타났으며 재래기장, 테프그라스와 클라인그라스가 각각 5,468, 5,442 및 5,197 kg/ha로 가장 낮게 나타났다. 조단백질 함량은 초종별로 다양하게 나타났는데 사료용 피 조생종, 테프그라스, 클라인그라스가 높은 경향을 보였으며 사료용 피 만생종이 5.7~5.9%로 가장 낮게 나타났다. 중성세제불용성섬유소(NDF)와 산성세제불용성섬유소(ADF) 함량은 5월 파종은 초종 간에 큰 차이를 보이지 않았으나 6월 파종은 클라인그라스가 나머지 초종에 비해 낮게 나타났다.

Enhancement of flood stress tolerance for upland-adapted cereal crops by the close mixed-planting with rice

  • Iijima, Morio;Awala, Simon K;Hirooka, Yoshihiro;Yamane, Koji
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.44-44
    • /
    • 2017
  • Recently, the occurrences of extreme flooding and drought, often in the same areas, have increased due to climate change. We tested the hypothesis that wetland species could help upland species under flood conditions; that is, the roots of wetland crops may supply $O_2$ to the roots of upland crops by a series of experiments conducted in both humid Japan and semi-arid Namibia (See Iijima et al, 2016 and Awala et al, 2016). Firstly, flooding tolerance of upland-adapted staple crops-pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) mix-cropped with rice (Oryza spp.) was investigated in glasshouse and laboratory experiments in Japan. We found a phenomenon that strengthens the flood tolerance of upland crops when two species-one wetland and one drought tolerant-were grown using the mixed cropping technique that results in close tangling of their root systems, hereinafter referred to "close mixed-planting". This technique improved the photosynthetic and transpiration rates of the upland crops subjected to flood stress ($O_2$-deficient nutrient culture). Oxygen transfer was suggested between the two plants mix-cultured in water, implying its contribution to the phenomenon that improved the physiological status of upland crops under the simulated flood stress. Secondly, we further tested whether this phenomenon would be expressed under field flood conditions. The effects of close mixed-planting of pearl millet and sorghum with rice on their survival, growth and grain yields were evaluated under controlled field flooding in semi-arid Namibia during 2014/2015-2015/2016. Single-stand and mixed plant treatments were subjected to 11-22 day flood stress at the vegetative growth stage. Close Mixed-planting increased seedling survival rates in both pearl millet and sorghum. Grain yields of pearl millet and sorghum were reduced by flooding, in both the single-stand and mixed plant treatments, relative to the non-flooded upland yields, but the reduction was lower in the mixed plant treatments. In contrast, flooding increased rice yields. Both pearl millet-rice and sorghum-rice mixtures demonstrated higher land equivalent ratios, indicating a mixed planting advantage under flood conditions. These results indicate that mix-planting pearl millet or sorghum with rice could alleviate flood stress on dryland cereals. The results also suggest that with this cropping technique, rice could compensate for the dryland cereal yield losses due to field flooding. Mixed cropping of wet and dryland crops is a new concept to overcome flood stress under variable environmental conditions.

  • PDF