• Title/Summary/Keyword: Penman

Search Result 201, Processing Time 0.025 seconds

Estimation of Paddy Rice Crop Coefficients for FAO Penman-Monteith and Modified Penman Method (논벼에 대한 Penman-Monteith와 FAO Modified Penman 공식의 작물 계수 산정)

  • Yoo Seung-Hwan;Choi Jin-Yong;Jang Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.13-23
    • /
    • 2006
  • In 1998, Food and Agriculture Organization addressed that FAO Modified Penman method possibly over-estimates consumptive use of water comparing to the measured reference crop evapotranspiration (PET) and Penman-Monteith method can be better choice for accurate PET estimation. Nevertheless it is still difficult to find research efforts about paddy rice crop coefficient for Penman-Monteith method. This study aims to estimate paddy rice crop coefficients for Penman-Monteith and FAO modified Penman methods in the manner of comparing two equations. To estimate the crop coefficients, measured evapotranspiration data during 1982-1986 and 1995-1997 were used. The average Penman-Monteith crop coefficients ranged from 0.78 to 1.58 for translated paddy rice and from 0.87 to 1.74 for flood-direct seeded paddy rice. The average FAO Modified Penman crop coefficients ranged from 0.65 to 1.35 for translated paddy rice and from 0.70 to 1.58 for flood-direct seeded paddy rice.

HOURLY VARIATION OF PENMAN EVAPOTRANSPIRATlON CONSIDERING SOIL MOISTURE CONDITION

  • Rim, Chang-Soo
    • Water Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.1-16
    • /
    • 2004
  • The purpose of this study is to understand the characteristics of hourly PET(Potential Evapo Transpiration) variation estimated using Penman ET model. The estimated PET using Penman model was compared with measured ET. For this study, two subwatersheds were selected, and fluxes, meteorological data and soil moisture data were measured during the summer and winter days. During the winter days, the aerodynamic term of Penman ET is much greater than that of energy term of Penman ET for dry soil condition. The opposite phenomena appeared fer wet soil condition. During the summer days, energy term is much more important factor for ET estimation compared with aerodynamic term regardless of soil moisture condition. Penman ET, measured ET, and energy term show the similar hourly variation pattern mainly because the influence of net radiation on the estimation of Penman ET is much more significant compared with other variables. Even though there are much more soil moisture in the soil during the wet days, the estimated hourly ET from Penman model and measured hourly ET have smaller values compared with those of dry days, indicating the effect of cloudy weather condition.

  • PDF

Estimation of Paddy Crop Coefficients for Penman-Monteith Method (논벼에 대한 Penman-Monteith 공식의 작물 계수 산정)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Jang, Min-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.20-25
    • /
    • 2005
  • In 1998, Food and Agriculture Organization addressed that FAO Modified Penman method possibly overestimates consumptive use of water comparing to the measured reference crop evapotranspiration (PET) and Penman-Monteith method can be better choice for accurate PET estimation. Nevertheless it is still difficult to find research efforts about paddy rice crop coefficient for Penman-Monteith method. This study aims to estimate paddy rice crop coefficients for Penman-Monteith method. To estimate the crop coefficients, measured evapotranspiration data during 1982-1986 were used. The average Penman-Monteith crop coefficients for transplanted paddy rice were ranged in $0.78\;{\sim}\;1.58$.

  • PDF

Improvement of agricultural water demand estimation focusing on paddy water demand (논용수 수요량 산정을 중심으로 한 농업용수 수요량 산정방법의 개선)

  • Park, Chang Kun;Hwang, Junshik;Seo, Yongwon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.939-949
    • /
    • 2020
  • Currently, the demand for farmland is steadily decreasing due to changes in the agricultural environment and dietary life. In line with this, the government adopted an integrated water management with the enactment of the Framework Act on Water Management on June 2019. Therefore, it is required to take a closer look at agricultural water demand that accounts for 61% of water use for efficient water resources management. In this study, the overal process was evaluated for estimating agricultural water demand. More specifically, agricultural water demand for paddy field, which comprises 67% to 87% of agricultural water demand, was reviewed in detail. The biggest issue in estimating the paddy field water demand is the selection of the method for potential evapotranspiration. FAO recommends Penman-Monteith, but, currently, our criteria suggest a modified Penman equation that shows over estimation. Also, the crop coefficient, which is the main factor in evaluating evapotranspiration, has an issue that does not consider the current climate and crop varieties because it was developed 23 years ago. Comparing the Modified Penman and Penman-Monteith equations using the data from Jeonju National Weather Service, the modified Penman equation showed a big difference compared to the Penman-Monteith equation. When the crop coefficient was applied, the difference between late May and late August increased, where the amount of evapotranspiration was high. The estimation process was applied to four study reservoirs in Gimje. Comparing the estimated water demand with the supplied water record from reservoirs, the results showed that the estimation accuracy depends on not just the potential evapotranspiration, but also the standard water storing level in paddy fields.

Comparisons of the Pan and Penman Evaporation Trends in South Korea (우리나라 증발접시 증발량과 Penman 증발량 추세 비교분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.445-458
    • /
    • 2010
  • The effects of geographical and climatic factors on annual and monthly pan and Penman evaporation were analyzed. 52 climatological stations were selected and trend analyses were performed. Furthermore, cluster analysis and multiple linear regression analysis were performed to understand the effects of geographical and climatic factors on pan and Penman evaporation. Based on stepwise multiple linear regression analysis, annual pan evaporation is proved to be mainly controlled by urbanization as geographical factor, and annual pan evaporation is also controlled by temperature, relative humidity, wind speed, and solar radiation as climatic factor. Especially wind speed is considered to be most significant climatic factor which affects pan evaporation. Meanwhile, Penman evaporation is not affected by geographical factors but it is affected by climate factors such as temperature, relative humidity, wind speed, and solar radiation except precipitation. Furthermore, the study results show that only proximity to coast affects pan evaporation trend on July; however, geographical and climatic factors do not affect pan evaporation trends in annual basis and monthly basis (January, April, and October). On the other hand, Penman evaporation trends were not affected by geographical factors in annual and monthly basises.

Evaluation of the evaporation estimation approaches based on solar radiation (일사량에 기초한 증발량 산정방법들의 적용성 평가)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.165-175
    • /
    • 2016
  • In order to examine the applicability, the evaporation estimation approaches based on solar radiation are classified into 3 different model groups (Model groups A, B, and C) in this study. Each group is tested in the 6 study stations (Seoul, Daejeon, Jeonju, Busan, Mokpo, and Jeju). The model parameters of each model group are estimated and verified with measured pan evaporation data. The applicability of verified model groups are compared with results of Penman (1948) combination approach. Nash-Sutcliffe (N-S) efficiency coefficients greater than 0.663 in all study stations indicate satisfactory estimates of evaporation. On the other hand, in the model verification process, N-S efficiency coefficients greater than 0.526 in all study stations indicate also satisfactory estimates of evaporation. However, N-S efficiency coefficients in all study cases except Model groups B and C in Busan are less than those of Penman (1948) combination approach. Therefore, it is concluded in this study that the evaporation estimation approaches based on solar radiation have capability to replace Penman (1948) combination approach for the estimation of evaporation in case that some meteorological data (wind speed, relative humidity) are missing or not measured.

A Study on Calibration of Tank Model with Soil Moisture Structure (토양수분 저류구조를 가진 탱크모형의 보정에 관한 연구)

  • Kang, Shin-Uk;Lee, Dong-Ryul;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.133-144
    • /
    • 2004
  • A Tank Model composed of 4 tanks with soil moisture structure was applied to Daecheong Dam and Soyanggang Dam watersheds. Calibration and verification were repeated 332 and 472 times for each watershed using SCE-UA global optimization method for different calibration periods and objective functions. Four different methods of evapotranspiration calculation were used and evaluated. They are pan evaporation, 1963 Penman, FAO-24 Penman-Monteith, and FAO-56 Penman-Monteith methods. Tank model with soil moisture structure showed better results than the standard tank model for daily rainfall-runoff simulation. Two types of objective function for model calibration were found. Proper calibration period are 3 years, in which dry year and flood year are included. If a calibrationperiod has an inadequate runoff rate, the period should be more than 8 years. The four methods of eyapotranspiraton computation showed similar results, but 1963 Penman method was slightly inferior to the other methods.

A study on PDSI improvement for drought monitoring: focused on the estimation method of potential evapotranspiration (가뭄감시를 위한 파머가뭄지수 개선 방안 연구: 잠재증발산량 산정 방법을 중심으로)

  • Moon, Jang Won;Kang, Jae Won;Cho, Young Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.863-875
    • /
    • 2017
  • In this study, the effects of potential evapotranspiration method on drought index results were evaluated using SC-PDSI. Monthly heat index method, Penman-Monteith method, and Hargreaves equation were used as potential evapotranspiration method. SC-PDSI was calculated using three potential evapotranspiration method at 56 stations and compared the results. As a result, it was confirmed that the results by Penman-Monteith method and Hargreaves equation showed similar SC-PDSI calculation results without much difference, and the result by monthly heat index method showed a relatively large difference. It was confirmed that the results of SC-PDSI and drought situation judgment for the period of spring and winter season showed a big difference by the month. In conclusion, when calculating PDSI in Korea, using Penman-Monteith method and Hargreaves equation will be able to express the drought situation well.

Analysis of Water Supply Reliability of Agricultural Reservoirs Based on Application of Modified Penman and Penman-Monteith Methods (수정 Penman 및 Penman-Monteith 논벼 증발산량 방법 적용에 따른 농업용 저수지 용수공급능 분석)

  • Cho, Gun Ho;Han, Kyung Hwa;Choi, Kyung Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.93-101
    • /
    • 2019
  • This study aims to analyze the influences of applications of two different evapotranspiration (ET) estimation methods on the irrigation water requirements (IWR) for paddy rice and water supply reliability of agricultural reservoirs. The modified Penman (MP), traditional method, and the Penman-Monteith (PM), the new adopted method, were applied on 149 reservoirs located in Honam province for this study. The weather date was used from 1987 to 2016, and analysed the trends of temperature and rainfall during rice growing season between past and current 10 years respectively. The increased average temperature and rainfall were observed from the current 10 years compared to the past years. This phenomena impacts on the results of ET and IWR estimations with decreased IWR obtained from high rainfall regions and increased ET obtained high temperature regions. For the comparisons of application results of two ET approaches, the PM method showed lower ET and IWR, and hence more reliable storage capacity of the reservoirs respect to water supply to paddy fields. The results also showed that the influences of different ET methods applications on the water supply reliability of reservoirs are negligible for the cases of over 3.7 watershed ratio and 670 mm unit reservoir storage, while significant variations of the results obtain from the applications between two ET approaches for the opposite cases. Further studies are necessary to consider various field conditions for practical applications of the PM method estimating ET in the fields of paddy farming.

An Analysis of Demand Variation for Paddy field Water by Applying Penmna-Monetith (Penman-Monteith 기법을 적용한 논벼 수요량 변화 분석)

  • Cho, Gun Ho;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.125-125
    • /
    • 2019
  • 현재 국내 논벼 수요량 산정방법은 수정 Penman방식에 의한 증발산량을 계산하여 구하고 있다. 증발산량 산정은 여러 가지 방식에 의해 산정될 수 있으나, 유엔의 식량농업기구 (FAO, Food and Agriculture Organization of the United Nations)에서는 작물 수요량 산정에 수정 Penman 공식을 사용할 경우 증발산량이 과다산정 되는 점을 지적하여, 건조 및 습윤 기후에서 비교적 정확하고 일정한 경향을 나타내는 Penman-Monteith(P-M)공식을 사용하도록 추천하였다. 이에 따라 국내 기상청 및 농촌진흥청에서도 증발산량 산정에 P-M공식을 적용하기 시작했으며, 이와 더불어 농촌진흥청에서는 P-M 추정법에 따른 벼를 포함한 주요 작물의 생육단계별 작물계수(Kc)를 제안하였다. 따라서 본 연구에서는 논용수 공급지구 8곳을 선정하여 대상지구별로 기존의 수정 Penman 방식과 P-M 방식을 적용한 경우의 증발산량 차이와 이에 따른 논벼 수요량 변화를 분석해 보았다. 그 결과, 수정 Penman 공식을 적용한 경우에 비해 P-M공식을 적용한 경우 증발산량이 모두 감소하는 경향을 나타내었다. 증발산량 산정방법 변화에 따른 대상지구별로 증발산량 결과값의 변화는 모두 비슷하게 나타났다. P-M방식을 적용했을 경우 잠재증발산량은 11.1%~14.9%(평균 12%)로 감소하였으며, 작물계수를 적용한 실제증발산량의 경우에도 3.8~5.1%(평균 4.6%) 감소하는 경향을 보였다. 이에 따른 논벼 수요량의 변화도 실제증발산량의 변화와 비슷한 감소 경향을 보였다. 다음으로 P-M방식을 채택한 경우의 논벼 수요량의 생육시기별 변화를 조사해 본 결과, 이앙기 수요량은 2.1%~6.3% (평균 4.4%)로 증가하다가, 본답기에는 수요량이 5.1%~11.3%(평균 8.4%)로 감소하였다. 전반적인 증발산량은 본답기 수요량 감소분이 이앙기 수요량 증가분보다 더 크기 때문에 감소경향을 나타낸 것으로 파악되었다. 또한 이앙기 수요량과 본답기 수요량의 증감의 경향이 다르게 나타난 것은 증발산량 산정방식의 변화에 따른 생육시기별 작물계수의 차이로 인한 변화로 파악되었다. 논벼 수요량은 농업용수 공급계획 수립의 주요기준이 되는 인자이므로, P-M방식 적용에 따른 논벼 수요량의 산정결과에 대해 보다 면밀한 검토가 필요할 것으로 사료된다.

  • PDF