• Title/Summary/Keyword: Penicillin G amidase

Search Result 3, Processing Time 0.025 seconds

Fed-batch Culture of Recombinant E.coli for the Production of Penicillin G Amidase (Penicillin G Amidase생산을 위한 재조합 대장균의 유가배양에 관한 연구)

  • Lee, Sang-Mahn
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.314-319
    • /
    • 2008
  • Penicillin G amidase (PGA, benzylpenicillinaminohydrolase, EC 3.5.1.11) is industrially important enzyme which converts penicillin G to 6-aminopenicillanic acid (6-APA) and phenylacetic acid (PAA). The PGA in E. coli ATCC 11105 is secreted into the periplasm after removing signal sequences and becomes heterodimer which composed of two subunits, small subunit (24 kDa) and large subunit (65 kDa). In this study, the PGA gene was obtained from E. coli ATCC 11105 using PCR (polymerase chain reaction) technique. The active PGA was successfully secreated into periplasm in E. coli BL2 1(DE3) harboring pET-pga plasmid. The optimized fed-batch fermentation, consisting of a three-step shift of culture temperature from $37^{\circ}C$ to $22^{\circ}C$, gave a productivity of 19.6 U/mL with a cell growth of 62 O.D. at 600 nm.

An Efficient Method for the Release of Recombinant Penicillin G Amidase from the Escherichia coli Periplasm (대장균의 periplasm으로부터 재조합 PGA 단백질의 효율적이고 간단한 방출 방법)

  • Lee, Sang-Mahn
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1145-1151
    • /
    • 2017
  • In this study, we report on a simple, efficient method for obtaining penicillin G amidase (PGA) from recombinant Escherichia coli using a formulation mixed with detergent and lysozyme. Research was conducted on the extraction efficiency of PGA from the periplasmic space in cells in terms of the type of detergent, detergent concentration, pH, reaction time, and temperature of permeabilization. The extraction yield of PGA in the formulated surfactant/lysozyme treatment was increased by approximately (55-65 U/ml) in comparison with that in the single surfactant treatment. The released PGA solution was concentrated and exchanged with buffer using an ultrafiltration (U/F) system. The yields of diatomite filtration, membrane filtration (M/F), and U/F were 69.7%, 93.8%, and 77.3%, respectively. A total of 212 KU of PGA was recovered. At the 25-L culture scale, the overall yield of extraction using the mixed surfactant/lysozyme method was 49.2%. The specific activity of extracted PGA was 11 U/mg in protein. The concentrated PGA solution was immobilized on microporous silica beads without further purification of PGA. The total immobilization yield of PGA on the resin was 48.7%, while the enzyme activity was 101 U/g. The immobilized PGA was successfully used to produce 6-APA from penicillin G. Our results indicated that a simple extraction method from periplasmic space in E. coli may be used for the commercial scale production of ${\beta}-lactam$ antibiotics using immobilized PGA.

Kinetic Study on the Immobilized Penicillin Amidase in a Differential Column Reactor (Differential column reactor에 있어서 고정화페니실린 아미다제의 반응속도론에 관한 연구)

  • Park, Jong-Moon;Park, Cha-Yong;Seong, Baik-Lin;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 1981
  • The penicillin amidase from Escherichia coli (ATCC 9637) was immobilized by entrappment in gelatin and DEAE-cellulose mixture cross-linked with glutaraldehyde, and the kinetics in a differential column reactor was studied. The optimal operating condition of a differential reactor was reasonably met when the enzyme loading was 1g, and 30 mM substrate solution in 0.1 M phosphate buffer (pH 8.0) was fed at flow rate 4$m\ell$/min and 4$0^{\circ}C$. The optimal pH and temperature were found to be 8.0 and 55$^{\circ}C$, respectively. The Michaelis-Menten constant was 4.8 mM while the maximum velocity was 308 units/g of the immobilized enzyme under the condition of the differential reactor. The effect of substrate inhibition disappeared in the immobilized enzyme preparation. The differential reactor was proved to be good for studying the true kinetics since the pH drop and the external diffusional resistance could be eliminated.

  • PDF