• Title/Summary/Keyword: Peng-Robinson equation of state

Search Result 69, Processing Time 0.029 seconds

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

Research on Liquefaction Characteristics of SF6 Substitute Gases

  • Yuan, Zhikang;Tu, Youping;Wang, Cong;Qin, Sichen;Chen, Geng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2545-2552
    • /
    • 2018
  • $SF_6$ has been widely used in high voltage power equipment, such as gas insulated switchgear (GIS) and gas insulated transmission line (GIL), because of its excellent insulation and arc extinguishing performance. However, $SF_6$ faces two environmental problems: greenhouse effect and high liquefaction temperature. Therefore, to find the $SF_6$ substitute gases has become a research hotspot in recent years. In this paper, the liquefaction characteristics of $SF_6$ substitute gases were studied. Peng-Robinson equation of state with the van der Waals mixing rule (PR-vdW model) was used to calculate the dew point temperature of the binary gas mixtures, with $SF_6$, $C_3F_8$, $c-C_4F_8$, $CF_3I$ or $C_4F_7N$ as the insulating gas and $N_2$ or $CO_2$ as the buffer gas. The sequence of the dew point temperatures of the binary gas mixtures under the same pressure and composition ratio was obtained. $SF_6/N_2$ < $SF_6/CO_2$ < $C_3F_8/N_2$ < $C_3F_8/CO_2$ < $CF_3I/N_2$ < $CF_3I/CO_2$ < $c-C_4F_8/N_2$ < $C_4F_7N/N_2$ < $c-C_4F_8/CO_2$ < $C_4F_7N/CO_2$. $SF_6/N_2$ gas mixture showed the best temperature adaptability and $C_4F_7N/CO_2$ gas mixture showed the worst temperature adaptability. Furthermore, the dew point temperatures of the $SF_6$ substitute gases at different pressures and the upper limits of the insulating gas mole fraction at $-30^{\circ}C$, $-20^{\circ}C$ and $-10^{\circ}C$ were obtained. The results would supply sufficient data support for GIS/GIL operators and researchers.

Solubility Measurement of Carbon Dioxide in Alkylcarbonates and Triacetin at High Pressure (고압에서 알킬카보네이트와 트리아세틴의 이산화탄소 용해도 측정)

  • Kim, Ji Won;Hong, Won Hi;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.124-129
    • /
    • 2015
  • The constant-volume method was used to determine the solubility of CO2 in various physical absorbents such as DMPEG (dimethyl ether of polyethylene glycol), DEC (diethyl carbonate), DMC (dimethyl carbonate), and TAT (triacetin) in the total pressure range from 5 to 30 bar. The Peng-Robinson equation of state has been used to describe the equilibrium behavior of these mixtures. It was found that the solubility of absorbents was in the of DMPEG250 > TAT > DEC > DMC at the same temperature. Futhermore, the solubiity of blended absorbent of DMPEG250 and DEC is higher than that of DMPEG 250 alone. Therefore, blended absorbent of DMPEG250 and DEC is expected to be an effective and low cost absorbent for physical absorption in precombustion CO2 capture.

Modelling Phase Equilibria of Binary Mixtures for the Direct Synthesis of Dimethyl Carbonate from CO2 (직접 합성법을 이용한 dimethyl carbonate제조공정을 위한 공정 혼합물의 상평형 모델링)

  • Im, Jihoon;Lee, Gangwon;An, Jichul;Kim, Hwayong
    • Clean Technology
    • /
    • v.11 no.4
    • /
    • pp.165-170
    • /
    • 2005
  • The aim of this study is to provide vapor-liquid equilibrium (VLE) information for the study of process which directly synthesize dimethyl carbonate (DMC) from $CO_2$. For this study we collected some necessary VLE systems data of Methanol-Water, Methanol-DMC, $CO_2$-DMC, $CO_2$-Methanol, $CO_2$-Methanol, and performed VLE calculation with Peng-Robinson equation of state, Wong-Sandler mixing rules that widely used in chemical industry. These calculation results relatively agreed with VLE data well. Optimized Parameters of EoS given through this calculation will be used as some valuable information for fundamental study, process development and process optimization of DMC direct synthesis.

  • PDF

The Calculation of the Extraction Process for the Atmospheric Residue-pentane System (상압잔사유-펜탄계 추출공정 계산)

  • Baek, Il-Hyun;Kim, Choon-Ho;Min, Byoung-Moo;Hwang, Jong-Sic;Hong, Song-Sun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.220-229
    • /
    • 1997
  • Extraction of valuable light hydrocarbon from atmospheric residue using pentane as a solvent has been carried out. The SIMDIS was used to calculate the true boiling point of atmospheric residue containing complex components before the modeling of the extraction process could by performed. In order to simplify the procedure, modeling was adopted and a lumping method was used, such that a large number of compounds were divided into similar component classes called pseudocomponents. The modeling of the extraction process of the atmospheric residue-pentane system was based on the isothermal flash calculation, and the Peng-Robinson equation of state was used to calculate the fugacity coefficient of vapor and liquid phase during calculation steps of modeling. The agreement between the experiments and the calculations was reasonable considering the uncertainties involved in modeling such complex processes.

  • PDF

Separation of Electronic Grade Highly Pure Carbon Dioxide Using Combined Process of Membrane, LNG Cold Heat Assisted Cryogenic Distillation (분리막 공정과 LNG 냉열 및 심냉 증류를 이용한 전자급 고순도 이산화탄소의 분리)

  • YOUNGSOO KO;KYUNGRYONG JANG;JUNGHOON KIM;YOUNGJOO JO;JUNGHO CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.90-96
    • /
    • 2024
  • In this paper, a new technology to obtain electronic grade, highly pure carbon dioxide by using membrane and liquefied natural gas (LNG) cold heat assisted cryogenic distillation has been proposed. PRO/II with PROVISION release 2023.1 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function to predict pure component vapor pressure versus temperature more accurately was selected for the modeling of the membrane and cryogenic distillation process. Advantage of using membrane separation instead of selecting absorber-stripper configuration for the concentration of carbon dioxide was the reduction of carbon dioxide capture cost.

Thermal Analysis of Prelaunch Transients in Cryogenic Oxidizer Tank of Liquid Propulsion Rocket (발사대기 중인 액체추진 로켓의 극저온 산화제 탱크 내 비정상 열해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Kyoung-Jin;Cho, Kie-Joo;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2008
  • The prelaunch thermal transients in the cryogenic oxidizer tank of liquid propulsion rocket subjected to uniform heat flux from outside are numerically analyzed through thermodynamic equations and heat and mass transfer relations. The prelaunch stage is assumed to be composed of five idealized sub-stages including pressurization process by helium gas injection. The Peng-Robinson equation of state is utilized in the lumped analysis of ullage gas. The liquid region is divided into a number of horizontal layers of uniform properties to account for the thermal stratification. The computational result for the typical case shows that the temperature rise of liquid oxidizer is less than 1K and the adsorbed helium into the liquid is approximately 10g.

A Study on the Thermodynamic Analysis for the DME Separation Process (DME 분리공정의 열역학적 해석에 대한 연구)

  • Cho, Jung-Ho;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.590-596
    • /
    • 2010
  • Through this study, we have attempted the thermodynamic analysis on the dimethyl ether (DME) separation process, which can be used for diesel alternative fuel, additive to LPG and natural gas. And we also have completed the simulation of DME separation process using PRO/II with PROVISION. As an appropriate thermodynamic models, we selected NRTL liquid activity coefficient model to describe the non-ideality between methanol and water. To estimate the vapor phase non-idealities, we have chosen the Peng-Robinson equation of state model. And we also use the Henry's law option to predict the solubilities of non-condensible gases like CO, $CO_2$, $H_2$, $CH_2$ and $N_2$ in methanol solvent. Case study showed that optimal solvent to feed molar ratio was 3.40

SOLUBILITY OF NITROGEN IN CLEAN EIRE EXTINGUISHING AGENTS AT HIGH PRESSURE

  • Kim, Jae-Duck;Lim, Jong-Sung;Lee, Youn-Woo;Lee, Youn-Yong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.534-541
    • /
    • 1997
  • Isothermal solubilities of nitrogen in clean fire extinguishing agents, such as bromotrifluoromethane (Halon-1301), bromochlorodifluoromethane (Halon-121 t), 1,1,1,2,3,3,3- heptafluoropropane (HFC-227ea), and trifluoroiodomethane (FIC-13I1) were measured in a circulation-type equilibrium apparatus. The temperature range was (293.2 to 313.2) K and the pressure range was (30 to 100) bar. The experimental data were well correlated with the Peng- Robinson equation of state using the Wong and Sandier mixing rules, and the relevant parameters are presented.

  • PDF

Phase Equilibrium of Binary Mixture for the (Carbon Dioxide + 1-Phenyl-2-Pyrrolidone) System at High Pressure

  • Lee, Ho;Jeong, Jong-Dae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.732-737
    • /
    • 2018
  • Experimental data of phase equilibria are reported for the binary mixture of 1-phenyl-2-pyrrolidone in supercritical carbon dioxide. Phase behavior data was measured in a synthetic method at a temperature ranging from 333.2 to 393.2 K and at pressures up to 97.14 MPa. The solubility of 1-phenyl-2-pyrrolidone in the carbon dioxide + 1-phenyl-2-pyrrolidone system increased as temperature increased at a constant pressure and it exhibited the type-I phase behavior. The experimental data for the binary mixture were correlated with the Peng-Robinson equation of state using mixing rule and the critical properties of 1-phenyl-2-pyrrolidone were predicted with the Joback and Lyderson method.