• Title/Summary/Keyword: Penetration resistance test

Search Result 404, Processing Time 0.023 seconds

Fine Dust Suppression by Enzyme Induced Carbonate Precipitation: Indoor Experiment and Field Application (EICP에 의한 미세먼지 억제: 실내 실험 및 현장 적용)

  • Song, Jun Young;Ha, Seong Jun;Sim, Youngjong;Jin, Kyu-Nam;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.67-78
    • /
    • 2019
  • The efficiency of suppressing fine dust was evaluated by conducting indoor and field experiments for the ground treated with EICP solution, which is an eco-friendly ground improvement method. In laboratory experiments, the EICP solution was prepared with inexpensive materials for the field applicability, and the optimal mixing ratio and optimal spraying volume of EICP solution were calculated. The optimum amount of calcium carbonate was shown when the ratio of urea/calcium chloride and white powder were 1.5 and 15 g/L, respectively. The optimum spraying amount of the EICP solution was $7L/m^2$ determined by fine dust suppression and cone tip resistance experiments. The spraying of water and EICP solution was conducted at the test-bed where dump trucks pass for the effect of suppressing fine dust of each method. The effective fine dust suppression method can be chosen depending on the situation of the site.

Effect of Stress History on CPT-DMT Correlations in Granular Soil (응력이력이 사질토의 CPT-DMT 상관관계에 미치는 영향)

  • Lee, Moon-Joo;Choi, Sung-Kun;Kim, Min-Tae;Lee, Ju-Hyeong;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.7-16
    • /
    • 2010
  • Stress history increases the residual horizontal stress of granular soil and, consequently, the penetration resistance. This study analyzes the effect of stress history on the cone resistance ($q_c$), horizontal stress index ($K_D$) and dilatometer modulus ($E_D$) of CPT and DMT from calibration chamber specimen in OC as well as NC state. Test results show that the normalized cone resistance by mean effective stress correlates well with the relative density and the state parameter, whereas the normalized cone resistance by vertical effective stress is a little affected by stress history. The influence of stress history is more reflected on $K_D$ than $E_D$ and $q_c$. The $K_D/K_0$, in which the effect of stress history on $K_D$ is compensated by the at-rest coefficient of earth pressure, $K_0$, is related to relative density, state parameter and the normalized cone resistance by mean effective stress. It is also observed that the normalized dilatometer modulus by mean effective stress ($E_D/{\sigma}_m'$) shows a unique correlation with the state parameter, regardless of stress history.

Classification of Alkali Activated GGBS Mortar According to the Most Suitable Usage at the Construction Site

  • Thamara, Tofeti Lima;Ann, Ki Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 2020
  • The usage of OPC-free alkali activated ground granulated blast furnace slag(GGBS) mortar has been widely studied on the previous years, due to its advantages on sustainability, durability and workability. This paper brings a new view, aiming to classify the best application in situ for each mortar, according to the type and activator content. By this practical implication, more efficiency is achieved on the construction site and consequently less waste of materials. In order to compare the different activators, the following experiments were performed: analysis of compressive strength at 28 days, setting time measured by needles penetration resistance, analysis of total pore volume performed by MIP and permeability assessment by RCPT test. In general, activated GGBS had acceptable performance in all cases compared to OPC, and remarkable improved durability. Following the experimental results, it was confirmed that each activator and different concentrations impose distinct outcome performance to the mortar which allows the classification. It was observed that the activator Ca(OH)2 is the most versatile among the others, even though it has limited compressive strength, being suitable for laying mortar, coating/plaster, adhesive and grouting mortar. Samples activated with NaOH, in turn, presented in general the most similar results compared to OPC.

Corrosion Behavior of Solution-Treated Mg-8%Al-X%Zn Casting Alloys (용체화처리된 주조용 Mg-8%Al-X%Zn 합금의 부식 거동)

  • Jun, Joong-Hwan;Hwang, In-Je
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.3
    • /
    • pp.126-133
    • /
    • 2015
  • The aim of this study is to investigate the effect of solution treatment on the corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys in 1M NaCl aqueous solution. After the solution treatment, all alloys showed single ${\alpha}$-(Mg) phase microstructure by dissolution of ${\beta}(Mg_{17}Al_{12})$ phase into the ${\alpha}$-(Mg) matrix. The $H_2$ evolution volume decreased with an increase in Zn content, which indicates that the addition of Zn plays a beneficial role in decreasing corrosion rate of the Mg-Al-Zn alloy in solution-treated state. The microstructural evaluations on the corrosion products and corroded surfaces after the immersion test in 1 M NaCl solution revealed that the incorporation of more $Al_2O_3$ and ZnO into the corrosion product, by which the penetration of $Cl^-$ ions is impeded, are thought to be responsible for the better corrosion resistance in relation with the Zn addition.

Technological Review on the Development of Metallic Armor Materials (금속 장갑재료의 개발기술 및 발전전망)

  • Kim, Hong-Kyu;Hong, Sung-Suk;Shim, In-Ok
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2011
  • This paper describes the state of the art for the development of metallic armor materials which are mainly used as armor plates of the combat vehicles. Several important micro-structural features affecting ballistic properties of the metallic armor are discussed. Optimization of the strength and toughness balance of the metallic armor is necessary for the improvement of the ballistic performance resulting from maximizing the resistance to the penetration of the bullet and also to brittle failure of the plates. Understanding and control of the adiabatic shearing phenomenon developed remarkably during high strain rate deformation is needed to prevent brittle failure of the metallic armor materials.

Effect of Welding Condition and Roller on Weldability of Al Coated Steel Sheet using Plasma Arc Welding (박판 알루미늄 도금강판의 플라즈마 용접성에 미치는 용접조건 및 롤러의 영향)

  • Lee, Tae-Woo;Park, Cheol-Ho;Kang, Nam-Hyun;Kim, Myung-Duk
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.54-58
    • /
    • 2012
  • Al-coated steel sheets with excellent heat and corrosion resistance are widely used in various applications. In welding of thin plate, some defects such as unmelted zone and metal-through occur easily in the beginning and ending of welding line. In the study, the welding defects in Al-coated steel sheets were investigated with respect to plasma arc current, height between Cu block and base metals, and using a roller to align the height of the base metal. Full penetration and voids free welds were obtained with a plasma arc current 52A and weld speed 2.3m/min. An unmelted zone increased and Ericshen rate decreased as the height between Cu block and base metal increased from 0 to 0.6mm. Using a roller moving ahead of the plasma arc, the length of unmelted zone decreased from 1.7mm to 0.5mm.

Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements (스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구)

  • Yoo, Tae Seok;Ryu, SungWoo;Kim, Jin Cheol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.

Estimation on the Durability of Metakaolin Concrete According to the W/B Ratio (물결합재비를 달리하여 제작한 메타카올린 혼입 콘크리트의 내구성능 평가)

  • Kim, Chun-Ho;Kim, Nam-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.84-91
    • /
    • 2014
  • In this study, in order to find the improvement effect of metakaolin for using improvement of strength in concrete structures, it is investigated the diffusion coefficient of chloride ions and adiabatic temperature rise test. As a result, due to the mixing of metakaolin, it has been confirmed reducing diffusion coefficient of chloride ions and could prevent down of slump for use of adding fly ash. Therefore, ensuring resistance to chloride ion penetration into concrete, it is possible to enlarge the W/B ratio and reduce the adiabatic temperature rise by mixing of metakaolin. So, it is confirmed that the durability of concrete structures is increased.

Laser Weldability of Sheet Steels for Tailored Blank Manufacturing (II) -Effect of Joint Configuration- (테일러드 블랭크용 박판 강재의 레이저 용접성 (II) -이음 형상이 용접성에 미치는 영향-)

  • 김기철;이기호;이목영
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.100-110
    • /
    • 1998
  • In this paper, the laser weldability of thin gage steels for automobile application is discussed. Welding was carried out with a high power carbon dioxide laser system, and the laser energy was concentrated through a plano-convex lens. Test results showed that the joint gap in the butt welding proved to be one of the critical conditions for an acceptable weld. In the case where the ratio of the gap clearance to the material thickness was slightly bigger than optimal value, the weld strength was reduced showing weld metal fracture. It was possible to obtained a weld penetration ratio of 0.91 when the vertical offset ratio was controlled to be 0.4 or smaller. Results also demonstrated that the weld strength of the lap joint was influenced by travel speed. At the travel speeds lower than 37 mm/s, the weld strength indicated higher value than that of class A recommendation strength of a resistance spot weld based on the KS code. It was clear that the complicated effect of specimen alignment should be considered so as to make a sound weld with high integrity when the laser process was applied to the long weld line.

  • PDF

Properties of High-Performance Concrete Containing High - Reactivity Metakaolin (고반응성 메타카올린을 사용한 고성능 콘크리트의 특성)

  • 원종필;권연성;이존자
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • This research deals with the properties of fresh and hardened high-performance concrete(HPC) incorporating high-reactivity metakaolin(HRM). The properties of fresh and hardened state concrete were investigated included air content, slump flow, setting time, heat of hydration, compressive strength, resistance to chloride-ion penetration, abrasion and repeated freezing and thawing. The properties of the HRM concrete were also compared with those of the portland cement concrete and silica fume(SF) concrete. The laboratory test results indicate that HRM material can be used as a supplementary cementitious material to produce high-performance concrete.