• Title/Summary/Keyword: Penetration resistance test

Search Result 404, Processing Time 0.029 seconds

Evaluation of Underwater Dam Concrete Structure Repair by Patching Material (댐 시설물 수중구조체 보수용 패칭재료의 적용 가능성 평가)

  • Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.77-81
    • /
    • 2009
  • This study was performed to evaluate applicability of patching materials for underwater dam concrete structure. Two kinds of patching materials was investigated. Laboratory experimentals were conducted by workability, compressive strength, bond strength, chloride ion penetration, abrasion resistance. Test results showed that the most performances are relatively good except chloride ion penetration.

A Study on the Ground Improvement Effective Evaluation of Reclaimed Land Using Cone Penetration Test (CPT를 이용한 준설매립지반의 개량효과 평가에 관한 연구)

  • Kim, Jong-Kook;Chae, Young-Su;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.910-921
    • /
    • 2004
  • In this study, the pilot tests on the reclaimed land were performed in order to find the suitable construction method with dynamic compaction Type I, Type II at different dynamic energy and hydraulic hammer compaction. The estimation of the compaction through the various pilot tests was performed by the CPT-qc, SPT-N and field density tests. As the result of the pilot tests, it shows that the dynamic compaction method is better than the hydraulic hammer compaction method in the effect of the ground improvement, especially dynamic compaction Type I is much superior to others. When it comes to method for measuring the intensity of the ground, the value of the cone penetration test-resistance(qc) is much suitable for the ground. Besides, the standards for the compaction control, which showed that over 10Mpa at 0 through 5meters in the upper layer and 7Mpa at 5 through 8meters in the lower layer in the CPT-qc, could be found without discrimination of the upper road and lower road on the reclaimed land. And it also found that the intensity of the reclaimed land gets back to the original status in about 10 through 15 days.

  • PDF

Resistance Spot Weldability of Surface Roughness Textured Galvannealed Steel Sheets (표면조도처리 된 합금화 용융아연도금강판의 저항 점 용접성)

  • Park, Sang-Soon;Kim, Ki-Hong;Kang, Nam-Hyun;Kim, Young-Seok;Rhym, Young-Mok;Choi, Yung-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.495-505
    • /
    • 2008
  • With the high proportion of zinc coated steels in body-in-white assembly, newly developed surface roughness textured galvannealed steel sheets have been introduced. In this study, zinc coated and surface roughness textured steel sheets were welded by resistance spot welding to investigate its weldability including electrode wear test. Based on the results of tensile-shear test, nugget diameter changes, and electrode tip growth test, it was clear that both surface roughness textured steels (GA-T and GA-E) showed good weldability. Also, there was no large difference in weldability and electrode wear behavior between GA-T and GA-E steels which have different surface roughness morphology. An analysis of electrode degradation showed Fe and Zn penetration through the electrode tip surface at 2400 welds reached $55{\sim}60{\mu}m$ and $75{\sim}80{\mu}m$, respectively. Therefore, there is no significant effect of surface roughness morphology on spot weldability of surface roughness textured galvannealed steel sheets. However, slight difference in thickness of alloying layers existing on electrode tip was found between GA-T and GA-E steels.

Normalization of Cone Resistance in Granular Soil (모래지반에서 콘 저항값의 정규화에 관한 연구)

  • Na Yung-Mook
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.33-45
    • /
    • 2004
  • Sandfill at reclaimed sites is usually formed by more than one placement method. Reclaimed sandfill often shows highly variable profiles and the cone penetration test is most commonly used for site characterization. Correlations between cone resistance and geotechnical parameters for sand are influenced by in-situ stress level and it is important to incorporate stress level effect. In this study, cone penetration tests were performed at several elevations from the top of a 10m high surcharge, which was later removed step by step. In order to establish more reliable correlations between cone resistance and geotechnical parameters for sand, different ways of normalizing cone resistance by the corresponding in-situ vertical stress were investigated.

A Study on the Resistance to Seawater Attack of Mortars and Concretes Incorporating Limestone Powder (석회석미분말을 혼입한 모르타르 및 콘크리트의 내해수성 연구)

  • Lee, Seung Tae;Jung, Ho Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.129-137
    • /
    • 2011
  • This study aims to evaluate the resistance to seawater attack of mortars and concretes incorporating limestone powder (0, 10, 20 and 30% of cement by mass). In order to achieve this goal, both chemical resistance by seawater and chloride ions penetration resistance of mortars or concretes were regularly monitored. From the test results, it was observed that the durability of cement matrix was greatly dependent on the replacement ratios of limestone powder. In other words, performance of cement matrix with 10% limestone powder was similar to that of OPC matrix. However, it was found that a high replacement ratio of limestone powder was ineffective to resist seawater attack.

A Reinforcement Effect of Pile Foundation by Compaction Grouting System in Railroad Station Building (Compaction Grouting System에 의한 철도역사건물 파일기초보강효과)

  • Chun, Byung-Sik;Choi, Seung-Kwon;Do, Jong-Nam;Sung, Hwa-Don
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1364-1368
    • /
    • 2006
  • By the countermeasure which is caused by with railroad station ground settlement it applied a CGS in each independent foundation. The effectiveness of the ground improvement and the bearing capacity of the compaction pile has been verified by the Cone Penetration Test(CPT) and Load Test. Test result show that penetration resistance and the cone friction force increased a lot and settlement 13.475mm as the standard settlement 40.0mm appeared at below. Also uniaxial compression test result $278kg/cm^2$ as the standard $150kg/cm^2$ appeared far a lot.

  • PDF

A Hydration based Model for Chloride Penetration into Slag blended High Performance Concrete

  • Shin, Ki-Su;Park, Ki-Bong;Wang, Xiao-Yong
    • Architectural research
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • To improve the chloride ingress resistance of concrete, slag is widely used as a mineral admixture in concrete industry. And currently, most of experimental investigations about non steady state diffusion tests of chloride penetration are started after four weeks standard curing of concrete. For slag blended concrete, during submerged chloride penetration tests periods, binder reaction proceeds continuously, and chloride diffusivity decreases. However, so far the dependence of chloride ingress on curing ages are not detailed considered. To address this disadvantage, this paper shows a numerical procedure to analyze simultaneously binder hydration reactions and chloride ion penetration process. First, using a slag blended cement hydration model, degree of reactions of binders, combined water, and capillary porosity of hardening blended concrete are determined. Second, the dependences of chloride diffusivity on capillary porosity of slag blended concrete are clarified. Third, by considering time dependent chloride diffusivity and surface chloride content, chloride penetration profiles in hardening concrete are calculated. The proposed prediction model is verified through chloride immersion penetration test results of concrete with different water to binder ratios and slag contents.

An Experimental Study on the Detection of Loosened Areas in a Ground cavity Using a Micro Penetration Test (초소형 관입시험기를 이용한 지반공동 주변지반의 이완영역탐지를 위한 실험적 연구)

  • Kim, Ho-Youn;Kim, Young-Ho;Park, Yoon-Suk;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.299-306
    • /
    • 2019
  • In this study, a model experiment that simulates the behaviour of the ground composed of several compacted layer was intended to measure the loosened area in the event of a ground cavity through a LAD (Loosened area detector). It was confirmed that the size of the cone diameter was affected by the ground composed of fine grain + granulated soil layered through the model soil. In order to select the appropriate cone type, a scale effect experiment was conducted. From the test results, a micro-cone was chosen for the most suitable indoor model experiment. In the case of applying LAD in this study, the loosening condition of the ground was determined by the rapid change in penetration resistance caused by the difference in the boundary surface and relative density due to the compaction of the ground for indoor model testing. The range of loosened area occurring in the cavity was estimated through the penetration resistance characteristics on the ground, and the failure area was identified through the reduction rate of penetration resistance in the loosening area.

Detection of thin-layered soil using CRPT in soft soil (CRPT를 이용한 연약지반 협재층 탐지)

  • Yoon, Hyung-Koo;Kim, Joon-Han;Kim, Rae-Hyun;Choi, Yong-Kyu;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.117-125
    • /
    • 2008
  • The detection of thin-layered soil is important in soft soils to evaluate the soil behavior. The smaller diameter cone penetrometer have been commonly used to detect the layer with increasing sensitivity. The objective of this study is to detect the thin-layered soil using cone resistance and electrical resistance. The cone resistivity penetration test (CRPT) is developed to evaluate the cone tip resistance and electrical resistance at the tip. The CRPT is a micro-cone which has a $0.78cm^2$ in projected area. The application test is conducted in a laboratory large-scale consolidometer (calibration chamber). The kaolinite, sand and water are mixed to make the specimen at the liquid limit of 46% using a slurry mixer. It takes two months for the consolidation of the specimen. After consolidation, the CRPT test is carried out. Furthermore the standard CPT results are compared with the electrical resistance measured at the tip in the field. This study suggests that the CRPT may be a useful tool for detecting thin-layers in soft soils.

  • PDF

Comparative study of Dutchcone and piezocone test on soft ground (연약지반에 대한 기계식 및 전자식 콘관입시험 비교 연구)

  • 장병욱;김재현;김동범;윤상묵;원정윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.237-244
    • /
    • 2002
  • A comparative study of 134 mechanical (Dutch cone) and 9. electronic cone (Piezocone) penetration data from the southern part of Korea has been performed. In general, Dutch cone results may be different from piezocone results due to the difference in structure of the cones. Cone penetrometer test data were analyzed and plotted in soil classification chart proposed by Robertson et. al.(1986,1990) Cone factors of Dutch cone and piezocone test have empirically been determined using laboratory and field vane test results. Using this cone factors, it was shown that there was good correlation between shear strength estimated using cone resistance and that of laboratory test and field vane tests. It was found that there was a good correlation between cone resistance from Dutch cone and that from piezocone. Dutch cone test provides a useful means for stratigraphic profiling in large project and has some advantage over piezocone in particular situations, such as very soft clay ground and dredged area.

  • PDF