• Title/Summary/Keyword: Penetration force and resistance

Search Result 26, Processing Time 0.026 seconds

The Textiles and the Performance Level in Developing the Pesticide Proof Clothing (기능성 농약방제복 개발을 위한 소재 및 성능에 관한 연구)

  • Hwang, Kyoung-Sook;Kim, Kyung-Ran;Lee, Kyung-Suk;Kim, Hyo-Cher;Kim, Kyung-Su;Baek, Yoon-Jeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.11
    • /
    • pp.1611-1620
    • /
    • 2007
  • The precaution to spray with agricultural chemicals is very important, in particular personal protective equipment against pesticide in order to protect farmers# pesticide poisoning. The Ministry of Agriculture and Forestry has proclaimed the announcement of pesticide proof clothing(PPC) in 1983, and revised it in 1987. The announcement had many performance items to achieve the high-quality protective clothing for pesticide including weight, density, force strength, dimensional change(in washing and drying), fastness(dyeing, washing, sweating and rubbing) and water resistance of clothes. Announcement of the PPC has better durability and penetration resistance function than former days, but the plenty of farmers didn#t wear it because of the intolerable heat. To increase wearing rates, the pesticide proof clothing must be estimated the water-vapour resistance. From the results, the developed PPC with polyester treated water-repellent showed the more excellent comfort than an existing PPC with nylon coated polyurethane. But the developed PPC appeared to have the low water-vapour resistance. Therefore, it is suggested that the property of pesticide penetration must be evaluated through the field test in the future study.

A Reinforcement Effect of Pile Foundation by Compaction Grouting System in Railroad Station Building (Compaction Grouting System에 의한 철도역사건물 파일기초보강효과)

  • Chun, Byung-Sik;Choi, Seung-Kwon;Do, Jong-Nam;Sung, Hwa-Don
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1364-1368
    • /
    • 2006
  • By the countermeasure which is caused by with railroad station ground settlement it applied a CGS in each independent foundation. The effectiveness of the ground improvement and the bearing capacity of the compaction pile has been verified by the Cone Penetration Test(CPT) and Load Test. Test result show that penetration resistance and the cone friction force increased a lot and settlement 13.475mm as the standard settlement 40.0mm appeared at below. Also uniaxial compression test result $278kg/cm^2$ as the standard $150kg/cm^2$ appeared far a lot.

  • PDF

A Study on Vibratory Behavior of Steel Sheet Pile Installed in Sand Ground (모래지반에 대한 강널말뚝의 진통항타거동 연구)

  • Lee, Seung-Hyun;Lee, Jong-Ku;Yoo, Wan-Kyu;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.79-90
    • /
    • 2007
  • Behaviors of instrumented steel sheet piles which are installed in sand ground by vibratory hammer were investigated. Especially, stresses acting on the pile during vibratory driving, efficiency factor which reflects differences between theoretical driving force and actually delivered acting force, justifiability of rigidity of steel sheet pile, dynamic resistance characteristics of soil and penetration characteristics of sheet pile were analysed. According to the field test results it is justifiable that steel sheet pile behaves as a rigid body during vibratory driving. And it can be seen that maximum stress acting on sheet pile section is far less than tensile strength of the material. Value of the maximum section force at sheet pile head was 72% of that estimated from theoretical equation. Magnitudes of displacement amplitudes computed from displacement-time history curve corresponding to four penetration depths were in the range of 16 $\sim$ 75% of that specified by manufacturer.

Improving the concrete quality and controlling corrosion of rebar embedded in concrete via the synthesis of titanium oxide and silica nanoparticles

  • Jundong Wu;Yan Cui
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Concrete is one of the most widely used structure materials. Concrete is like the motor of the construction industry. The remarkable feature of this Concrete is its cheapness and low energy consumption. Concrete alone does not show resistance against any force but only against compressive forces. Therefore, steel rebar product is used as a reinforcement and increase the strength of Concrete. It can be done by putting rebar in Concrete in different ways. Rebar rusting is one of the crucial symptoms that cause swift destruction in reinforced structures-factors such as moisture in concrete increase the steel corrosion rate. In most cases, it is difficult to compensate for the damage caused by the corrosion of base metals, so preventing corrosion will be much more cost-effective. Coatings made with nanotechnology can protect Concrete against external degradation factors to prevent water and humidity from penetrating the Concrete and prevent rusting and corrosion of the rebar inside. It prevents water penetration and contamination into the Concrete and increases the Concrete's quality and structural efficiency. In this research, silica and titanium dioxide nanoparticle coatings have been used due to their suitable electrical and thermal properties, resistance to oxidation, corrosion, and wear to prevent the corrosion of rebars in Concrete. The results of this method show that these nanoparticles significantly improve the corrosion resistance of rebars.

Characteristics of Hybrid Protective Materials with CNT Sheet According to Binder Type

  • Jihyun Kwon;Euisang Yoo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.197-204
    • /
    • 2022
  • Recently, the demand has increased for protective clothing materials capable of shielding the wearer from bullets, fragment bullets, knives, and swords. It is therefore necessary to develop light and soft protective clothing materials with excellent wearability and mobility. To this end, research is being conducted on hybrid design methods for various highly functional materials, such as carbon nanotube (CNT) sheets, which are well known for their low weight and excellent strength. In this study, a hybrid protective material using CNT sheets was developed and its performance was evaluated. The material design incorporated a bonding method that used a binder for interlayer combination between the CNT sheets. Four types of binders were selected according to their characteristics and impregnated within CNT sheets, followed by further combination with aramid fabric to produce the hybrid protective material. After applying the binder, the tensile strength increased significantly, especially with the phenoxy binder, which has rigid characteristics. However, as the molecular weight of the phenoxy binder increased, the adhesive force and strength decreased. On the other hand, when a 25% lightweight-design and high-molecular-weight phenoxy binder were applied, the backface signature (BFS) decreased by 6.2 mm. When the CNT sheet was placed in the middle of the aramid fabric, the BFS was the lowest. In a stab resistance test, the penetration depth was the largest when the CNT sheet was in the middle layer. As the binder was applied, the stab resistance improvement against the P1 blade was most effective.

An Investigation of the Spray Characteristics according to Injection Conditions for a Gasoline Direct Injector (직분식 가솔린 인젝터의 분사 조건에 따른 분무 특성 분석)

  • 이기형;이창식;이창희;류재덕;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.89-95
    • /
    • 2001
  • Recently GDI(Gasoline Direct Injection) engine is spotlighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. When compared to PFI(Port Fuel Injection) engine, GDI engine needs more complicated control and optimal design with injection system. In addition, spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is also varied. Thus spray structure should be analyzed in details to meet various conditions. In this experimental study, two types of visualization system were developed to simulate compression stroke and intake stroke, respectively. With an increase of the ambient pressure, the penetration length tends to decrease due to rising resistance caused by the drag force of the ambient air. Spray characteristics impinged on the piston has a significant effect on mixture stratification around the spark plug. These results provide the information on macroscopic spray structure and design factors far developing GDI injector.

  • PDF

Pumpkin Seed Oil as a Partial Animal Fat Replacer in Bologna-type Sausages

  • Uzlasir, Turkan;Aktas, Nesimi;Gercekaslan, Kamil Emre
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.551-562
    • /
    • 2020
  • Beef fat was replaced with cold press pumpkin seed oil (PSO; 0%, 5%, 15%, and 20%) in the production of bologna-type sausages. A value of pH, water-holding capacity (WHC), jelly-fat separation, emulsion stability and viscosity values were determined in meat batters. Thiobarbituric acid reactive substances (TBARS), color, and textural characteristics (TPA, shear test, penetration test) were determined in end-product at 1, 7, 14, 21, and 28 days of storage at 4℃. The pH values were varied between 6.06 and 6.08. With the increase in the level of PSO in meat batters, there was a significant increase in WHC, jelly-fat separation and viscosity values (p<0.05) while a significant decrease in emulsion stability (p<0.05). TBARS values of sausages were found to be significantly higher than in the control group (p<0.05), and this trend continued during storage. Increasing of PSO level were caused a significant increase in L* and b* values while a decrease in a* value (p<0.05). Hardness, adhesiveness and chewiness values were significantly reduced whereas cohesiveness and resilience values increased (p<0.05). Maximum shear force and work of shear was significantly decreased as the level of PSO increased (p<0.05). Hardness, work of penetration and the resistance during the withdrawal of the probe values (penetration tests) increased significantly with the increase in the level of PSO (p<0.05). These results indicate that PSO has potential to be use as a replacement of animal-based fats in the production of bologna-type sausages.

Effect of Spot Welding Conditions on Spatter and Mechanical Strength Properties (스패터 및 기계적 강도특성에 미치는 점용접 조건의 영향)

  • 서도원;윤호철;전양배;임재규
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.70-75
    • /
    • 2003
  • Spot welding is a process that sheet metals are joined in one or more spot by heating at the faying interface. In this process, the spatter is dispersed from melted area. It has been reported that spatter generation has adverse effects on weld quality. However, no systematic study has been carried out to find out its effect on weld quality in resistance spot welding processes. In this study, specially designed specimen are used to perform experimental investigation of spatter generation and its effect. Major finding of this study show trends in tensile-shear strength for various amounts of spatter generated during spot welding process. Thus, optimum welding conditions are proposed in view of spatter generation and tensile-shear strength. (Received December 11, 2002)

Preparation and Application of Water-Based Acrylic Sizing Agent (수용성 아크릴 호제의 합성 및 그 응용에 대한 연구)

  • Lee, Doug-Youn;Seo, Eun-Hyun;Kim, Joong-In;Kim, Jung-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.536-542
    • /
    • 1996
  • Water-based acrylic sizing agent(GSW-7000) was prepared by emulsion copolymerization for sizing polyester yarns. Ammonium salt version of the acrylic sizing agent offered greater abrasion resistance to weaving forces and water resistance for water jet loom. GSW-7000 exhibited proper viscosity for sizing, high penetration ability and excellent adhesion to polyester yarn. It was possible to reduce the size pick-up to 70~80% of ordinary solvent-based sizing agent due to excellent adhesive strength of GSW-7000.

  • PDF

Effects of Capillary Force on Salt Cementation Phenomenon (소금의 고결화 현상에서 모세관 효과)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.37-45
    • /
    • 2010
  • Salt cementation, a typical naturally-cemented phenomenon, may occur due to water evaporation under the change of climate. Capillary force may influence the distribution of cement in granular soils. This study addresses the effect of capillary force on salt cementation using five different techniques: cone penetration test, electrical conductivity measurement, photographic imaging technique, nondestructive imaging technique, and process monitoring by elastic wave. Glass beads modeling a particulate media was mixed with salt water and then dried in an oven to create the cementation condition. Experimental results show that salt cementation highly concentrates at the top of the small particle size specimens and at the middle or the bottom of the large particle specimens. The predicted capillary heights are similar to the locations of high salt concentration in the cemented specimens. Five suggested methods show that the behavior of salt-cemented granular media heavily depends on the capillary force.