• Title/Summary/Keyword: Penetration Characteristics

Search Result 1,194, Processing Time 0.027 seconds

Effect of Injection Parameters on Diesel Spray Characteristics (디젤분무 특성에 미치는 분사인자의 영향)

  • Sim Song-Cheol;Jung Byung-Kook;Ahn Byoung-Kyu;Kim Jang-Hein;Jung Jae-Yeon;Song Kyu-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • The characteristics of diesel spray have effect on the engine Performance such as power. fuel consumption and emissions. Therefore, This study was Performed to investigate the effect of various injection parameters. In this study. the experiment is performed by using the high temperature and high pressure chamber. Spray behaviors are visualized by using the high speed camera and spray angle. Penetration etc. are measured. Experimental results are summarized as follows ; 1) Correlations of spray Penetration is expressed as follows $$0 $$t_b 2) Correlations of spray Angle is expressed as follows $$T_a=293K \;;\; tan({\theta}/2)=0.59({\rho}_a/{\rho}_f)^{0.437}$$ $$T_a=473K\;;\; tan({\theta}/2)=0.588({\rho}_a/{\rho}_f)^{0.404}$$ 3) The measured macro characteristics - spray tip penetration and spray angle agreed well with established correlations.

Spray and Combustion Characteristics of a Dump-type Ramjet Combustor

  • Lee, Choong-Won;Moon, Su-Yeon;Sohn, Chang-Hyun;Youn, Hyun-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2019-2026
    • /
    • 2003
  • Spray and combustion characteristics of a dump-type ram-combustor equipped with a V-gutter flame holder were experimentally investigated. Spray penetrations with a change in airstream velocity, air stream temperature, and dynamic pressure ratio were measured to clarify the spray characteristics of a liquid jet injected into the subsonic vitiated airstream, which maintains a highly uniform velocity and temperature. An empirical equation was modified from Inamura's equation to compensate for experimental conditions. In the case of insufficient penetration, the flame in the ram-combustor was unstable, and vice versus in the case of sufficient penetration. When the flame holder was not equipped, the temperature at the center of the ram-combustor had a tendency to decrease due to the low penetration and insufficient mixing. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length of the combustor became longer and the flame holder was equipped. Combustion efficiency increased when the length of the combustor was long and the flame holder was equipped. Especially, the effect of the flame holder was more dominant than that of the combustor length in light of combustion efficiency.

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air-stream Conditions

  • Lee, Choong-Won;Youn, Hyun-Jin;Lee, Tae-Hee;Lee, Geun-sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.749-752
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its spray characteristics and devising a means of mixing fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and, in the high pressure conditions, the jet penetrations are similar each other. In the dual hole injectors, the jet penetrations of rear orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rear orifice is increased because of the drag reduction created by the jet column of the front orifice. And, because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual hole injector is much larger than the jet penetration of single hole injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

Comparison of Liquid- and Vapor-Phase Spray Characteristics of E85 Fuel using Schlieren Visualization Technique (쉴리렌 가시화 기법을 이용한 E85 연료의 액상 및 기상 분무 비교)

  • Park, Suhan;Chang, Mengzhao
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • The purpose of this study is to investigate the liquid- and vapor-phase spray characteristics, such as spray tip penetration and spray angle using gasoline direct injection (GDI) injector with multi-hole. The vapor-phase spray was captured by the Schlieren visualization system, which consists of high-speed camera, LED lamp, concave mirrors, and knife-edge. The liquid-phase spray was visualized by Mie-scattering techniques. Both spray images of vapor- and liquid-phase were visualized under 373 K of ambient temperature, 1 bar of ambient pressure, and 100/200 bar of injection pressure. The energizing duration was fixed at 1.5 ms. From the analysis of experimental results, it revealed that the increased injection pressure induced an early vaporization due to the improvement of droplet atomization. The spray tip penetration and spray angle in vapor-phase were higher than those in liquid-phase. The difference in the spray tip penetration between vapor- and liquid-spray gradually increased with the time elapsed after the injection. Even with the spray angle characteristics, it was found that the difference between the spray angle of liquid and vapor spray gradually grew after they entered steady-state conditions.

Environmental Friendly Characteristics of CRM Asphalt Concrete and Optimal Mixing Ratio (CRM 아스팔트의 최적 혼합비와 환경친화적 특성)

  • Ryu, Byeong-Ro;Han, Yang-Su
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.311-314
    • /
    • 2001
  • The asphalt mixture with CRM(Crumb Rubber Modifier) is known to show a better performance in resisting thermal cracking, fatigue cracking and rutting compared with the conventional mixture. The laboratory tests on the physical characteristics of indirect tensile strength, density, flow and Marshall value of the CRM asphalt were conducted. The test results show that CRM asphalt has better physical characteristics than that of conventional asphalts. And the analysis on the noise reduction effect, penetration capacity from the field test on the national road in Haksan of Chungbuk, and recycling of tire waste were conducted. From this study, the results show that 1% CRM asphalt has higher the noise reduction effect and penetration capacity that those of conventional asphalts. And, optimal contents of crumb rubber modifier in the asphalt binder is one percent. In this case, crumb rubber modifier were used 10 kg to make the asphalt binder of one cubic meter. So it was named as Eco-asphalt.

  • PDF

Effects of Cross-Head Speed And Probe Diameter on Instrumental Measurement of Tomato Firmness

  • Batu, Ali;Thompson, A.Keith
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1340-1345
    • /
    • 1993
  • Five textural characteristics , epicarp strength, deformation , firmness , toughness and penetration time were calculated from force/deformation curves obtained by pressure testing tomato fruits. The fruits were harvested at either the mature-green or red maturity stages. The effects of changing the probe diameter and cross-head speed were investigated on force/deformation characteristics of tomatoes. It was confirmed that increasing of cross-head speed and probe diameter highly significantly effect all textural of the characteristics mentioned above , except epiarp strength of red tomatoes at 200 mm minute cross-head and penetration time of red and green tomatoes after 200mm minute and 100 mm minute cross-head respectively.

  • PDF

Simulated Distribution Characteristics of Surface Temperature on Irradiating of a Laser

  • Lee, Young-Wook;Yeon, Sang-Ho
    • International Journal of Contents
    • /
    • v.5 no.2
    • /
    • pp.16-19
    • /
    • 2009
  • In this paper, we concern about the distribution characteristics of surface temperature by the increment of time, diffusivity and heat flux on irradiating of a laser. The penetration depth corresponding to the induced constant heat flux or irradiated laser, is simulated by a computer algorithm. The distribution of temperature versus penetration depth for the variation of time and diffusivity is characterized at the constant heat flux and on irradiating of a laser. The temperature of constant heat flux at the fixed diffusivity or time, is decreased by the pattern of exponential function as the time t or diffusivity a is increased (a=10, 100, 1000). The temperature of constant heat flux is not changed but exponentially fixed with the increasing diffusivity and the fixed time. On the other hand, the temperature of laser at the fixed diffusivity or time is decreased linearly. Our results show that the characteristics of the simulated surface temperature in a semi-infinite solid are similar to the graphs on theoretical consideration.

Penetration and Breakup Characteristics of Pulsed Liquid Jets in Subsonic Crossflowse (아음속 수직분사제트에서의 가진 분무의 분무 특성연구)

  • Kim, Jin-Ki;Song, Jin-Kwan;Kim, Min-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.83-88
    • /
    • 2007
  • The spray characteristics and liquid column penetration of steady and pulsed injection measurements have been experimentally studied using high speed camera in liquid jets injected into subsonic crossflow. The objectives of this research are to comparison the spray characteristics of steady injection with pulsed injection. Moreover. the effects of frequency are also studied. As the result, This research has been showed that pulsed injection has different penetration compared with steady injection.

  • PDF

Characteristics of the Spray and Combustion in the Liquid Jet (수직 분사되는 연료제트의 분무 및 연소특성)

  • 윤현진;문수연;손창현;이충원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.107-115
    • /
    • 2002
  • In this paper, spray and combustion characteristics of a liquid-fueled ramjet engine were experimentally investigated. The spray penetrations were measured to clarify the spray characteristics of a liquid jet injected transversely into the subsonic vitiated airstream, which Is maintained a high velocity and temperature. The spray penetrations are increased with decreasing airstream velocity, increasing airstream temperature, and increasing air-fuel momentum ratio. To compensate our results of penetrations, the new experimental equation were modified from Inamura's equation. In the case of insufficient penetration, the combustion phenomenon in ram-combustor were unstable. Therefore, the sufficient penetration must be considered to make a stable flame.

A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.155-166
    • /
    • 2014
  • This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.